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Summary

In this thesis we studied the origin of cosmological perturbations in the early Uni-

verse, which were seeds of temperature anisotropies and structures observed today, such

as galaxies, clusters, etc. Initially, we reviewed the well-known theory of inflation in

General Relativity, including the motivations, main assumptions, gauge freedoms, quan-

tum theory and predictions. We showed that inflation predicts a nearly scale-free power

spectrum for primordial scalar quantum fluctuations, which grow in time and generate

inhomogeneities today. This result is in agreement with observations (see Komatsu et al.

(2011)). It also predicts a nearly scale-free power spectrum for tensor perturbations. In

addition, we studied this issue in a modified gravity called Eddington-Born-Infeld the-

ory (Bañados and Ferreira (2010)), which introduces significant modifications to General

Relativity in regions with high curvature, e.g. during the early Universe. We discussed

the motivations, gauge freedoms, quantum theory and predictions. We found a scale-free

power spectrum for scalar and tensor primordial quantum perturbations, although some

numerical estimations do not fit the experimental values.
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Chapter 1

Introduction

The Universe is very homogeneous and isotropic on large scales (⇠ 100Mpc). Obser-

vations of the Cosmic Microwave Background (CMB) by WMAP1 and matter distribution

by SDSS2 evidence the isotropy. Since we assume that we take no special place in the

Universe, we can infer homogeneity. However, if we look at the sky today, we can see

structures, such as galaxies, clusters and superclusters. These inhomogeneities have also

been observed in the CMB. The temperature of the CMB is T0 ⇡ 2.7255K, but small

temperature anisotropies of the order of �T
T0

⇠ 10�5 appear. The description of the origin

and evolution of these inhomogeneities is an open problem in cosmology.

In order to explain these observed inhomogeneities, it is assumed that there was an

early stage where the Universe was nearly homogeneous and isotropic. At this stage, some

primordial quantum fluctuations are created, which grow in time, and eventually can gen-

erate the structures observed today due to gravitational instability. This is the motivation

to study early linear perturbations in a cosmological background. Then, mathematically,

the problem of describing the growth of initial small perturbations is reduced to finding

a quantum solution for the fluctuations during the early Universe. This process is full

of subtleties related to the gauge symmetry of General Relativity, physical variables and

quantum vacuum choices, which will be explained in this thesis.

The most accepted theory for describing these primordial fluctuations is the inflation

1Wilkinson Microwave Anisotropy Probe.

2Sloan Digital Sky Survey.
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theory for General Relativity, originally proposed by Guth (1981). It initially appears

to solve some shortcomings of the Big Bang model, such as the horizon and flatness

problems. Inflation is an early stage of the Universe where the energy of a scalar field

dominates. During this era, the scale factor grows nearly exponentially, so the expansion

of the Universe is accelerating. Inflation assumes that linear quantum fluctuations are in

their ground state in the past, and it makes a prediction for them: a nearly scale-invariant

power spectrum. It also assumes Gaussian and adiabatic fluctuations. It is possible to

compare these predictions with observations. In fact, this result is in agreement with

observations of the CMB anisotropies and matter distribution (Komatsu et al. (2011)).

Even though the inflation theory has been very successful due to its important predictions,

it has also been criticised for its assumption of a fundamental unknown scalar field, with

very peculiar characteristics.

One possible alternative to the inflation theory is given by the Eddington-Born-Infeld

(EBI) gravity (Bañados and Ferreira (2010)). This is a modified gravity, which was origi-

nally proposed with the intention of eliminating divergences present in General Relativity.

As a result, it introduces significant modifications during the early Universe, including the

elimination of the Big Bang. Also, it predicts a period of accelerated expansion during the

radiation-dominated era, which avoids the horizon and flatness problems. These results

suggest that this theory could be an alternative to inflation, and then motivate the study

of the origin and evolution of primordial quantum fluctuations in the EBI theory.

A di↵erent approach to explaining the origin of fluctuations in General Relativity

is proposed by Hollands and Wald (2008). Here, a scale-invariant power spectrum for

primordial fluctuations is obtained without introducing a fundamental scalar field. This

approach is based on the assumption that semiclassical physics applies to scales greater

than a fundamental scale l0, so perturbations can be considered as born in their ground

state when the physical wavelength �ph of a perturbation satisfies �ph = l0.

In this thesis we will explain the theory of inflation and study inhomogeneities in the

EBI theory by making use of the ideas proposed by Hollands and Wald. The text is

organised as follows:

In chapter 2 we review the theory of inflation along with its key predictions. We first

discuss the main picture and shortcomings of the Big Bang model. We also introduce

the linear perturbation theory in a homogeneous and isotropic background Universe. We

2



show the standard classification of metric perturbations. After that, we motivate the

theory of inflation by explaining the solution it gives to some shortcomings of the Big

Bang theory. We show the most common implementation of inflation: a single scalar field

minimally coupled to gravity, with a slow-roll potential. Then we discuss the importance

of the gauge degrees of freedom in the quantum theory of inflation, along with the method

to fix them correctly. Finally, we focus on the scalar perturbations in inflation and we

quantise them. We calculate the prediction for the power spectrum of the only scalar

physical degree of freedom present in this theory, and mention the result in the case of

tensor perturbations.

Chapter 3 follows the same basic structure as chapter 2, now for the Eddington-Born-

Infeld theory (Bañados and Ferreira (2010)). First, we introduce this gravitational theory

by giving a motivation and showing the form of the action. After that, we show the

evolution of the scale factor and its cosmological consequences in the homogeneous and

isotropic Universe. With the same motivation of chapter 2, we consider the linear theory

of perturbations, focusing on scalar and tensor fields. Then we revisit the gauge freedoms

and show a specific gauge choice. After that, we explicitly calculate a second-order EBI

action coupled to a perfect fluid. Finally, we quantise the physical scalar and tensor

degrees of freedom in this theory and calculate their spectra, following the approach of

Hollands and Wald (2008).

3



Chapter 2

Cosmological quantum perturbations

in General Relativity

In this chapter we will review the theory of inflation for primordial linear quantum

perturbations. First, we will show the Einstein equations in a homogeneous and isotropic

background coupled to a perfect fluid. This model corresponds to the Big Bang theory.

Next, with the motivation of studying the origin of inhomogeneities, we will introduce

the linear theory of perturbations. We will state the standard classification for general

metric perturbations explicitly. Then we will introduce the inflation theory, including the

problems it solves and the single scalar field model. We will then discuss some problems

related to the gauge invariance of this theory, show the transformations of the perturbation

fields and explain how to make a gauge choice correctly. Finally, we will review the

quantum cosmological theory in inflation. We will focus on scalar perturbation fields,

and calculate a second-order action for them, which will be quantised in order to find the

power spectrum for primordial fluctuations. We will also mention briefly the result for

tensor perturbations. Throughout this chapter we will use 8⇡G = 1, c = 1, ~ = 1 and

signature (+,-,-,-).

2.1 Cosmological background and perturbations

In this section we review the main equations of the Big Bang model. Then, we study

the cosmological theory of linear perturbations. The latter is needed to explain the origin
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of observed structures such as planets, stars, galaxies, etc.

2.1.1 Background: homogeneous and isotropic Universe

Cosmology describes the global structure and evolution of the Universe. The standard

cosmology is based upon a maximally spatially symmetric Universe: homogeneous and

isotropic. This assumption embodies the observational fact that the Universe is nearly

homogeneous and isotropic on large scales. Therefore, as an approximation, the metric

line element for the spacetime of the Universe is:

ds2 = a2(⌘)(d⌘2 � d~x · d~x), (2.1)

where ⌘ is the conformal time and a(⌘) is known as the scale factor. Here, we have

assumed a spatially flat metric, i.e. a Universe with an Euclidean spatial geometry. This

assumption is supported by observations (see Komatsu et al. (2011)), which show a nearly

spatially flat Universe.

The contribution of matter and radiation to the Universe is well described for a perfect

hydrodynamic approximation. The stress-energy tensor is then:

T µ
⌫ = (p+ ⇢)uµu⌫ � p�µ⌫ , (2.2)

where p = p(⌘) is the pressure of this fluid, ⇢ = ⇢(⌘) the rest energy density and uµ =

(1/a, 0, 0, 0) its isotropic 4-velocity.

Usually, a simple relation for the state equation for the perfect fluid is used:

p = !⇢, (2.3)

where ! is constant. In order to study the evolution of the scale factor, in the Big Bang

theory, there are 3 types of matter considered:

• Radiation (or relativistic matter): ! = 1/3,

• Dust (or non-relativistic matter): ! = 0,

• Dark energy (or vacuum energy): ! = �1.
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The equations of motion governing the evolution of the scale factor are the Einstein

equations and the continuity equation for matter:

Gµ
⌫ = T µ

⌫ , (2.4)

T µ
⌫;µ = 0, (2.5)

which, considering (2.1) and (2.2), are explicitly:

H2 =
1

3
⇢a2, (2.6)

a00 =
1

6
(⇢� 3p)a3, (2.7)

⇢0 = �3H(⇢+ p), (2.8)

where 0 ⌘ d/d⌘, and H ⌘ a0/a is the comoving parameter. Equation (2.6) is known as

the Friedmann equation.

All the equations shown in this subsection give the basis of the Big Bang model.

This model makes accurate and testable hypotheses in four key areas: expansion of the

Universe, origin of the cosmic microwave background, nucleosynthesis of light elements,

formation of galaxies and large-scale structures. The remarkable agreement with the ob-

servational data gives considerable confidence in the model. However, this model does not

explain some features (Garcia-Bellido (2000)), such as flatness, large scale homogeneity

and isotropy. These are severe shortcomings in the predictive power of the Big Bang

model, which are the motivation for the inflation theory. It also lacks an explanation for

the origin of inhomogeneities such as stars and galaxies. This problem is addressed by

the theory of perturbations.

2.1.2 Theory of linear perturbations

Cosmological perturbation theory is an important area of study because it allows us

to explain the fact that our Universe is not perfectly homogeneous and isotropic, as the

Big Bang theory describes it. Our Universe has inhomogeneities, such as galaxies, clusters

and CMB anisotropies.

It is natural to suppose that small deviations from homogeneity and isotropy were
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generated during the early Universe due to quantum physics. Since gravitation is an at-

tractive force, these small perturbations would grow in time, producing structures through

the mechanism of gravitational collapse. So, in order to get a more precise description of

our Universe, it is important to study the origin and evolution of these small primordial

perturbations. We do that using the linear perturbation theory.

Let us consider linear perturbations of the spacetime metric and matter on a given

background. In general, we can split the perturbed metric into two parts:

gµ⌫ =
(0)gµ⌫ + �gµ⌫ , such that |�gµ⌫ | ⌧ |(0)gµ⌫ |, (2.9)

where (0)gµ⌫ corresponds to a background metric and �gµ⌫ to the first order metric cor-

rections. This second term describes how the real spacetime deviates from the idealized

background. Matter is also perturbed:

T µ
⌫ =

(0)T µ
⌫ + �T µ

⌫ , such that |�T µ
⌫ | ⌧ |(0)T µ

⌫ |, (2.10)

where (0)T µ
⌫ represents a background stress-energy tensor and �T µ

⌫ its perturbation. The

background terms and first order terms satisfy the standard equations (2.4) and (2.5).

Notice that all perturbations are initially arbitrary, so even if the background is ho-

mogeneous and isotropic, in general perturbations are not.

Next, we show the standard way of writing metric perturbations.

2.1.3 Classification of metric perturbations

In the following discussion, we will consider first order perturbations in the early

stages of the idealized homogeneous and isotropic background Universe described previ-

ously. Metric perturbations are categorised into three di↵erent types: scalar, vectorial

and tensorial. This classification refers to the way perturbation fields transform under

spatial coordinate transformations. Scalar metric perturbations are coupled to matter

perturbations, so they are responsible of the formation of the observed structures today.

Tensor perturbations give origin to primordial gravitational waves. For a perfect fluid,

vector perturbations decay in an expanding Universe, so they are not relevant today (see

Baccigalupi (2012)).
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Scalar Perturbations

The most general way to construct metric perturbations to the background 2.1 with

scalars, is using 4 scalar fields �, , E,B:

�(s)gµ⌫ = a2(⌘)

 

2� �B,i

�B,i 2( �ij � E,ij)

!

. (2.11)

These ordinary partial derivatives are in general covariant derivatives with respect to a

spatial background metric (see Mukanov, Feldman and Brandenberger (1992)).

Vector Perturbations

Vector perturbations can be constructed by using two vectors in 3 dimensions: Si and

Fi. These vectors satisfy:

Si
,i = Fi

,i = 0. (2.12)

In this way, these two vectors have no scalar part. Here we shift from upper to lower

three-space indices and vice versa by using the metric �ij and its inverse �ij. So, a general

vector metric perturbation is the following:

�(v)gµ⌫ = �a2(⌘)

 

0 �Si

�Si Fi,j + Fj,i

!

. (2.13)

Tensor perturbations

Tensor perturbations can be constructed by using one 3-dimensional symmetric tensor

hij, which satisfies:

hi
i = 0, hij

,i = 0. (2.14)

Then, a general tensor metric perturbation is:

�(t)gµ⌫ = �a2(⌘)

 

0 0

0 hij

!

. (2.15)

We notice that we have ten independent functions to describe metric perturbations,

which is in fact the number of independent components of a 4-rank symmetric tensor.
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The most important advantage of this classification for linear metric perturbations is that

each one of them evolves independently. This allows us to study scalars, vectors and

tensors separately, and so divide a long problem in several shorter ones.

In this section we have shown the main equations in the Big Bang model. We have

also shown the standard classification for linear metric perturbations. The specific form

for matter perturbations will be addressed later.

As we mentioned before, several questions are left unanswered by the Big Bang model.

Some of these issues will be explained in the following section, along with a possible

solution to them: inflation theory. Inflation has been very successful because it also

makes a correct prediction for cosmic microwave background anisotropies and matter

distribution today.

2.2 Inflation

Cosmic inflation is an early period of accelerated expansion of the Universe. It is

believed to occur at an energy scale of 1015 GeV. This period is followed by the radiation-

dominated era, dust era, and dark energy era. The very successful idea of inflation,

originally developed in Guth (1981), o↵ers a solution to the horizon problem and the

flatness problem, among others (Garcia-Bellido (2000)). It also gives an explanation to

the origin of primordial perturbations in the Universe, and makes a specific prediction

for the power spectrum for primordial matter fluctuations: nearly scale-invariant. It also

assumes Gaussian and adiabatic fluctuations. These predictions are in agreement with

the observations (Komatsu et al. (2011)). There are many di↵erent inflation scenarios,

but the most common scenario is the one where the accelerated expansion is driven by

one scalar field with special dynamics.

Specifically, inflation is a quantum cosmological perturbation theory in which the

Einstein-Hilbert action is coupled to a scalar field with a certain potential. In order to

produce an accelerated expansion, a negative pressure for the scalar field is required.

During inflation, the scale factor is expected to grow by a factor of 1028, at least. The

consequences are that all inhomogeneities are smoothed and the Universe flattens, which

leads to a flat and large-scale homogeneous and isotropic Universe today. This accel-

erated expansion is controlled by the so-called slow-roll parameters, and the slow-roll
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approximation.

We will now explain the flatness and horizon problems, which are the original mo-

tivations to use the inflation theory. This will be followed by the explanation of the

implementation with a single scalar field and the slow-roll approximation. Finally, we

write a second-order action for the only physical scalar degree of freedom in this theory

and apply the canonical quantisation in quantum field theory to find the power spectrum.

The particle coming from the scalar field which drives inflation is called inflaton.

2.2.1 Flatness problem

As we mentioned previously, the Universe at large scales can be described by a homo-

geneous and isotropic metric with an expansion parameter depending on time. In general,

a metric with these characteristics can be written as:

ds2 = a(t)2


d⌘2 � dr2

1� kr2
+ r2d⌦2

�

, d⌦2 = d✓2 + sin2 ✓d�2. (2.16)

This is called the Friedmann-Lemâıtre-Robertson-Walker metric. This metric is in polar

coordinates and k is a constant parameter related to the curvature of the space. We can

have k < 0, k = 0 and k > 0, for negative, zero and positive spatial curvature, respectively.

On the other hand, the Friedmann equation for this metric coupled to a perfect fluid is:

H2 =
1

3
⇢a2 � k, (2.17)

where ⇢ is the energy density of the fluid in rest, andH the comoving Hubble parameter. A

critical density ⇢c, needed to obtain a flat Universe, can be defined, i.e. if the total energy

density of the perfect fluid is ⇢c, then the Universe has an Euclidean spatial geometry.

The value for this critical density at a particular time t⇤ is:

⇢c =
3H2(t⇤)

a2(t⇤)
. (2.18)

We can also define a density parameter ⌦:

⌦ =
⇢

⇢c
. (2.19)
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From here, we can see that ⌦ = 1 represents flatness. If we combine (2.17), (2.18) and an

equation of state p = !⇢, the density parameter satisfies:

d⌦

d ln a
= ⌦(1 + 3!)(⌦� 1), (2.20)

from which we can see that ⌦ has an unstable equilibrium around ⌦ = 1 for ! > �1/3.

Consequently, any deviation from flatness at early times is expected to be very large

today.

Observations of the CMB anisotropies today say that the Universe is almost flat. In

fact, the density parameter is estimated to be 0.9937 < ⌦ < 1.0178 (see Komatsu et al.

(2011)). If the Universe is almost flat now, ⌦must have been fine-tuned to 1 at early times.

In fact, to reproduce the experimental value of ⌦ today, we would need |⌦�1| . 10�55 at

the GUT scale (Baumann (2007)). It seems, then, that the Universe had this particular

initial condition. In the standard Big Bang model this precise initial condition must be

assumed without explanation. The question is: how did the initial energy density come

to take this value? This is called the flatness problem. An answer can be given by the

inflation theory.

This is considered as a problem because it is more natural to think that the initial

energy density of the Universe could take any value, in which case it would be more

probable to have a non-flat Universe today (under the implicit assumption that all ⌦

values are equally likely at an early stage), and so it would be strange to have today the

specific value ⇢c. However, some scientists think that this is not a problem at all (see

Helbig (2012)).

2.2.2 Horizon problem

According to standard cosmology, photons decoupled from the rest of the components

(baryons and electrons) at a temperature of the order of 3000 K. This corresponds to the

so-called last-scattering surface, at a redshift near 1100. From the epoch of last scattering

onwards, photons free-stream and reach us basically untouched. Detecting primordial

photons is therefore equivalent to taking a picture of the Universe at the time of the last

scattering. Observations of this cosmic background radiation show a spectrum consistent

with that of a black body at temperature 2.725 K (except for small anisotropies of order
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10�5). This suggests that all these points were causally connected at the time of this

surface, and as a consequence they reached a thermal equilibrium, which is observed

today. The Big Bang model cannot explain this observation, and to know why we will

need to study the evolution of the cosmological horizon.

The cosmological horizon is a surface in the space centred on a certain observer, such

that the region inside this sphere is observable but the exterior is unobservable. This

defines how large a region of the Universe can be in causal contact. The radius of this

sphere is defined as the distance that a photon has traveled since the Big Bang. This

means, two objects separated by a distance larger than the horizon today, have never

been in causal contact. The cosmological horizon in a time t is

dh(t) = a(t)

Z t

0

dt0

a(t0)
= a(t)

Z t

0

da0

a02
H

0�1 ) dh / 1

H
, (2.21)

where 1/H is the Hubble radius1. We interpret the Hubble radius as the distance at which

objects have a recession velocity (according to the Hubble’s law) equal to that of light.

Since the cosmological horizon is proportional to the Hubble radius, it is enough to study

the evolution of the Hubble radius. It is important to mention that all objects outside the

Hubble radius are not in causal contact now, but it does not mean that they have never

been in causal contact.

In the Big Bang model, one can study the evolution of the Hubble radius. In particular,

we can compare the length corresponding to our present Hubble radius at the time of the

last scattering to the size of the Hubble radius at that time. We would see that the latter

is smaller that the former. So, at the time of last scattering, there were regions causally

disconnected within the volume that is now our observable Universe. The question is:

how can disconnected regions have the same temperature? This is the horizon problem.

1The fact that the cosmological horizon is proportional to the Hubble radius is true for the standard
forms of energy considered in cosmology. These are such that a / tn or a / e↵t, where n and ↵ are any
constant.
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2.2.3 Solution

To explain the solution to these two problems, we define the comoving Hubble radius

Rc:

Rc ⌘
1

aH
=

1

ȧ
. (2.22)

If the comoving Hubble radius is to decrease, then ȧ must increase:

d2a

dt2
> 0. (2.23)

So, the expansion of the Universe must be accelerating. This is why this period is called

inflation.

The solution to the horizon problem is that, early on, the Universe might not have

been dominated by radiation. Perhaps, it was dominated by another form of energy,

which caused the comoving Hubble radius to decrease. In this way, at the time of the last

scattering, the comoving Hubble radius could have been larger than ours today, so the

bath of photons within the region of our observable Universe today could have reached a

thermal equilibrium at that time. This period of inflation, would have to be followed by

the radiation-dominated era, the matter-dominated era, and the dark energy era.

We expect to have roughly the behaviour shown in Figure 2.1 for the comoving Hubble

radius during the early Universe. Figure 2.1 shows the evolution of the comoving Hubble

radius Rc (green line) as a function of the scale factor during inflation and the radiation

era. During inflation, the comoving Hubble radius decreases, and later it increases during

radiation era. Therefore, a given comoving scale � (blue line), say, the comoving distance

between two galaxies, is first a sub-Hubble scale (� < Rc), and there is causal contact

between these two galaxies. Later, it is a super-Hubble scale (� > Rc), and the galaxies

cannot communicate. Finally, in the radiation era or later, it is again a sub-Hubble scale,

and they have contact again. If � corresponded to an observable scale for us today, it

should have been smaller than the comoving Hubble radius scale at the last scattering

time or previously in order to solve the horizon problem. Typically, inflation is considered

to end at energy scales of order 1015 GeV. If so, the comoving Hubble radius at the end

of inflation is estimated to be at least 28 orders of magnitude smaller than it is today.

As a consequence, during inflation the scale factor should have grown at least 28 orders

of magnitude. This is the minimum amount of inflation required to solve the horizon
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Figure 2.1: The comoving Hubble radius Rc (green line) as a function of the scale factor
for early times: epoch of inflation and radiation. Very early on, a scale of interest � (blue
line) was smaller than the comoving Hubble radius and therefore physical processes were
happening at that scale.

problem, but inflation could in fact go on for much longer.

The described behaviour of Rc in the inflation era could happen if the Universe is

dominated by a form of energy such that:

p < �⇢
3
. (2.24)

Since the energy density is always positive, the pressure must be negative. This can be

seen from the Einstein equation (2.7):

d2a/d⌘2

a3
=

1

6
(⇢� 3p) ) d2a/dt2

a
= �1

6
(⇢+ 3p). (2.25)

Then, the condition (2.23) is equivalent to

⇢+ 3p < 0 ) p < �⇢
3
. (2.26)

In addition, this assumption of a period with accelerated expansion solves the flatness

problem. Due to the condition (2.24), during inflation any deviation from ⌦ = 1 tends to

get smaller. Therefore, an arbitrary value of ⌦ before inflation could evolve to be as near
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to 1 as we want, depending on how long the inflation period was, which makes it more

natural to expect |⌦�1| . 10�55 after inflation. Inflation does not predict an exact value

for ⌦ at early times (so it does not determine the parameter k), but it lets us have initial

conditions with a large uncertainty before inflation and still have ⌦ ⇡ 1 today.

2.2.4 Single scalar field and slow roll approximation

The most common implementation of inflation, with the requirement (2.24), is done

with one scalar field '(~x, t) minimally coupled with gravity. The stress-energy tensor is

T ↵
� = g↵⌫

@'

@x⌫
@'

@x�
� g↵�



1

2
gµ⌫

@'

@xµ

@'

@x⌫
+ V (')

�

, (2.27)

where V (') is a potential for the field '. Let us consider the field '(~x, t) coupled to the

metric in (2.1). In that case, ' will only depend on time, and the energy density and

pressure will be

⇢ = T 0
0 =

1

2
'̇2 + V ('), (2.28)

p = T i
i =

1

2
'̇2 � V ('), (2.29)

where '̇ represents the derivative of ' with respect to the physical time t. It follows that

negative pressure occurs when there is more potential energy than kinetic. This happens

if '̇ ⇡ 0 while V (') is nonzero.

Figure 2.2 shows a model for the potential V ('). It has a very flat zone in which
1
2 '̇

2 ⌧ V ('), where the scalar field slowly rolls toward its ground state. This assumption

in the form of V (') is called slow-roll approximation. In order to quantify the flat zone,

two parameters are defined:

✏V ⌘ 1

2

✓

V 0

V

◆2

, (2.30)

�V ⌘ V
00

V
. (2.31)

These are called slow-roll parameters. Here V 0 ⌘ dV
d'

and V
00 ⌘ d2V

d'2 . The subindex V

is used here because these slow-roll parameters are defined only in terms of the potential
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  ()V



Slow roll

Figure 2.2: Example of V ('). It contains a very flat section in which inflation begins.
The scalar field slowly rolls to the right, toward its ground state.

V ('), but in literature di↵erent definitions can be found (see, for example, Dodelson

(2003)).

When these parameters are small, the shape of the potential is restricted and the slow-

roll approximation holds. In that case, in the equation (2.6), we can neglect the kinetic

term '̇, and we can approximate

3H2 ⇡ V ('). (2.32)

In (2.8), we neglect the term '̈, obtaining

3H'̇+ V 0 ⇡ 0. (2.33)

Using these last two equations, we can approximate

✏V ⇡ 1

2

'̇2

H2
= � Ḣ

H2
=

d

dt

✓

1

H

◆

, (2.34)

�V ⇡ � 1

H

'̈

'̇
+

1

2

'̇2

H2
. (2.35)

These approximations hold when the slow-roll parameters are small. They will be useful

to simplify some calculations in the quantum theory by considering only relevant terms
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during inflation. From (2.34) we can see that under the slow roll approximation, H is

almost constant. Therefore, the metric describes almost a de Sitter space.

2.2.5 Matter perturbations

Since inflation is apparently a good description for the beginning of the Universe, we

will use it to study primordial cosmological perturbations.

In the previous section we did not specify matter perturbations. Consider perturba-

tions for the scalar field described above:

' = '(0)(t) + '(1)(~x, t), |'(1)| ⌧ |'(0)|. (2.36)

Then, the stress-tensor perturbations in conformal coordinates:

T (1)0
0 =

1

a2

h

�'(0)02'(1) + '(0)0'(1)0 + V 0a2'(1)
i

, (2.37)

T (1)0
i =

1

a2
'(0)0'

(1)
,i , (2.38)

T (1)i
j =

h

'(0)02'(1) � '(0)0'(1)0 � V 0a2'(1)
i

�ij, (2.39)

where V 0 is evaluated at '(0).

With the classification of scalar, vector and tensor perturbations explained above, we

can see that matter perturbations have only scalar perturbations. This means, '(1)(~x, t)

will be coupled only to scalar metric perturbations.

In this section we have shown the main picture of the theory of inflation. We described

the two main problems solved by inflation and the most common implementation: with a

single scalar field. We also considered first order perturbations in inflation, showing the

explicit form of the stress-energy tensor perturbations.

Having described all the primordial first order perturbations in General Relativity

with inflation, the next step is to study the quantum theory of these primordial fluctua-

tions. In order to do this, we must quantise the fluctuations and calculate their 2-point

Green functions. This process has some subtleties, one of which is related to the gauge

invariance of this theory. For this reason, before talking about quantum fluctuations, we

shall continue with a complete section of discussion about the gauge invariance.
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2.3 Gauge invariance

The action for General Relativity with inflation is the following:

S = �1

2

Z

R
p
�g +

Z p
�g

✓

1

2
@µ'@µ'� V (')

◆

, (2.40)

which has a gauge symmetry that comes from considering general coordinate transfor-

mations. However, in the linear perturbation theory, this action is invariant only under

infinitesimal transformations of first order. Then, all concepts are restricted to first order

perturbations. In particular, the gauge-invariant variables used here are invariant only to

first order.

Let us study the infinitesimal coordinate transformations. Suppose we perform the

following change of coordinates:

x̃µ = xµ + ⇠µ, (2.41)

where ⇠µ = ⇠µ(x) is an arbitrary infinitesimal shift vector function. We split ⇠µ into two

parts:

⇠µ = (⇠0, ⇠i), such that ⇠i ⌘ ⇠iT + @i⇠ and @i⇠
iT = 0. (2.42)

Here, we shift the three-spatial indices with the three-spatial metric �ij and its inverse �ij.

As we mentioned before, tensor, vector and scalar parts are decoupled. Thus, the vector

gauge freedom ⇠iT (vector part of the shift vector) is related only to vector perturbations

of the metric. Similarly, the scalar gauge freedoms ⇠0 and ⇠ (scalar parts of the shift

vector) are related only to scalar perturbations of the metric. Since there is no tensor

part of the shift vector, tensor metric perturbations hij are gauge-invariant.

From now on, we will focus on scalar perturbations, so let us see how the scalar metric

and matter perturbations transform under this infinitesimal coordinate transformation.

In general, metric transforms from g to g̃ such that:

�gµ⌫ ⌘ g̃µ⌫(x)� gµ⌫(x) = �⇠⌫;µ � ⇠µ;⌫ . (2.43)

Considering the background (2.1) and scalar perturbations (2.11), equation (2.43) gives

�̃ = �� (a0/a)⇠0 � ⇠0
0
,  ̃ =  + (a0/a)⇠0, B̃ = B + ⇠0 � ⇠0, Ẽ = E � ⇠. (2.44)
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The scalar perturbation for inflation also transforms:

'̃(1) = '(1) � '(0)0⇠0. (2.45)

The arbitrariness of the vector ⇠µ is called gauge freedom, and it can cause some confu-

sions. Not all apparently perturbed metrics are real perturbed space-times. For instance,

a homogeneous and isotropic form of the metric can be transformed to an inhomogeneous

form by performing a particular coordinate transformation. So, in order to be certain

whether we are considering a homogeneous and isotropic space-time or a perturbed one,

we will need to distinguish physical inhomogeneities (geometrical) and coordinate arti-

facts.

One approach to this problem is to work in a manifestly gauge-invariant framework.

It consists in defining a new set of gauge-invariant perturbation fields and rewrite all

the actions (or equations of motion) in terms of these new fields. Since, in general, not

all the gauge-invariant perturbation fields are physical, one must also find the physical

degrees of freedom by finding only relevant gauge-invariant fields which the action depends

on. This method is easier to work with than others because all physical quantities are

gauge-invariant. Specifically, we are going to follow the idea of (Maldacena (2003)), which

consists in fixing all the gauge freedoms and eliminating non-physical perturbation fields,

in such a way that the final physical degrees of freedom are gauge-invariant.

2.3.1 Gauge choice

We have seen that there are two gauge scalar degrees: ⇠0 and ⇠. Since they are

arbitrary, we shall use them to set some scalar perturbations to zero. It is necessary

to be very careful with our gauge choice because we will study quantum cosmological

perturbations. In the classical theory of linear perturbations, one works only with the

equations of motion, and one could fix the gauge freedom by setting any pair of fields to be

zero, consistent with (2.44) and (2.45), without losing neither information nor generality.

However, in the quantum perturbation theory, one works with the action, with which it is

only possible to set fields with redundant equations to zero. This is because when a field

is eliminated in the lagrangian, its equation of motion will not appear, and its information

will consequently be lost. If the gauge freedom is fixed in an action by setting to zero
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fields which do not have a redundant equation of motion, crucial information contained

in these equations of motions would be lost. The resulting action with the gauge fixed

would be di↵erent to that without the gauge fixed. Since redundant equations of motion

do not carry any new information, there is no problem in eliminating them.

How can we easily find a pair of fields with redundant equations of motion? This can

be done by studying the infinitesimal gauge invariance of the perturbed action (2.40). This

perturbed action is obtained by replacing the perturbations fields in (2.40) and expanding

the Taylor series up to second-order in these fields. This action gives first order equations

for each field. Considering only scalar perturbation fields, a general variation of the

perturbed action is:

�S =

Z

�

Eq���+ Eq � + EqE�E + EqB�B + Eq'(1)�'(1)
�

, (2.46)

where Eqn denotes the equation of motion for a field n. But if we replace these variations

of fields �n by the gauge variations (2.44)-(2.45), we should obtain �S = 0, because the

action is gauge-invariant. Let us do this and perform some integration by parts:

�Sgauge =

Z

✓

Eq0� + (Eq � Eq�)
a0

a
+ EqB � Eq'(1)'(0)0

◆

⇠0 +
⇣

Eq0B � EqE

⌘

⇠. (2.47)

Since �Sgauge = 0, both parenthesis are zero because ⇠ and ⇠0 are completely arbitrary.

This gives us two relations between the equations of motion:

Eq0� + (Eq � Eq�)
a0

a
+ EqB � Eq'(1)'(0)0 = 0, (2.48)

Eq0B � EqE = 0. (2.49)

Any field that has an equation which can be worked out from these last two equations,

has, of course, a redundant equation of motion. Thus, the possibilities to fix the gauge in

the action are:

( ,'(1)) + (E). (2.50)

Equation (2.50)2 means that we can use one scalar gauge freedom to set the value of

2This equation does not include B as a possible field to be fixed by the gauge choice. Its equation
of motion can, in fact, be worked out from (2.48) but the problem is that B cannot be fixed along with
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one field from the first parenthesis and the other gauge freedom to set one field from the

second parenthesis.

Our gauge choice will be:
˜'(1) = Ẽ = 0. (2.51)

These conditions fix ⇠ and ⇠0 uniquely:

⇠ = E and ⇠0 = '(1)/'(0). (2.52)

Now we have reduced our initial problem with 5 scalar perturbation fields to one with 3:

 , B and �. This will simplify our later work. This gauge choice is good because if we

define the following gauge-invariant field:

R ⌘  +
H
'(0)0

'(1), (2.53)

called comoving curvature perturbation, it turns out to be identical to the perturbative

metric variable  :

R =  if '(1) = 0. (2.54)

Thus, in this gauge choice  is gauge-invariant, but the other fields left are not necessarily

so. We will see later that R is the only physical scalar field in the theory of inflation.

In this section we have discussed the di�culties related to the gauge freedom in the

theory of inflation. We described the framework we will use later: gauge-invariant method.

We showed an explicit way to fix the gauge freedom in an action, along with the choice

we will use in the following section.

The next step is to study the quantum perturbation theory for inflation. That means,

to write explicitly a second-order action for the only physical degree of freedom in this

theory, quantise it, and calculate its two-point Green function.

E. This is because the information in the equation for E is contained in the equation for B (see 2.49).
Thus, if E is eliminated from the action we must keep B to not lose information.
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2.4 Quantum inflation theory

As we have said before, although the cosmic microwave background indicates that

the Universe in the past was extraordinarily homogeneous and isotropic, we know that

the Universe today is not exactly homogeneous: we observe galaxies, clusters and super-

clusters on large scales. These structures are expected to arise from very small quantum

primordial inhomogeneities that grow in time via gravitational instability, and that may

have originated tiny ripples in the metric and matter. Those ripples must have left some

trace as temperature anisotropies in the microwave background. In fact, such anisotropies

were discovered by the COBE satellite in 1992. They appear as perturbations in temper-

ature of only one part in 105. Also, these ripples originated observed structures today,

through gravitational collapse.

Furthermore, the anisotropies observed by WMAP are in agreement with a small-

amplitude, nearly scale-invariant, primordial power spectrum of inhomogeneities (Ko-

matsu et al. (2011)). The power spectrum is defined as the Fourier transformation of

the spatial 2-point correlation function. In addition, in order to explain the distribution

of galaxies and clusters of galaxies on very large scales in our observable Universe, a

scale-invariant density perturbation spectrum was proposed (Harrison (1970)).

Besides the two problems solved by inflation and described previously, one of the most

astonishing predictions of inflation is that quantum fluctuations of the inflationary field

generate large-scale perturbations in the metric and matter, predicting a nearly scale-

invariant power spectrum for primordial perturbations, as observed. For this reason,

quantum linear perturbation theory with inflation has been very successful.

The quantum inflation theory consists in quantising the action (2.40) for the physical

perturbation fields and studying its properties. Focusing on scalar type perturbations,

the relevant action is a second-order action in the perturbation fields obtained by taking

(2.40), replacing (2.36) and (2.11), and expanding in Taylor series up to second-order.

As we explained in the previous section, we will fix the gauge (2.51) to simplify this

second-order action. Also, we will eliminate all non-physical degrees of freedom.

We expect to have only 1 scalar physical degree of freedom. It is known that General

Relativity without matter has no scalar degree of freedom, and the matter action for

inflation has 1 scalar degree of freedom '(1). In total, then, there is only 1 scalar degree

of freedom. As we said in the previous section, we will describe it with  .
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Tensor perturbations are also relevant, because they can be, in principle, observed

today. The inflation theory also predicts a nearly scale-invariant power spectrum for

tensor perturbations. A detailed analysis of quantum tensor perturbations can be found

in Dodelson (2003).

In this section we explicitly calculate an action of second-order in the scalar perturba-

tions for matter and metric, and an action for the only physical scalar field. We quantise

this field and calculate its power spectrum. We also mention the result of the power

spectrum for tensor perturbations.

2.4.1 Second-order action

Let us start considering the complete action:

S = �1

2

Z

R
p
�g +

Z p
�g

✓

1

2
@µ'@µ'� V (')

◆

. (2.55)

First, we replace here the perturbed metric and matter fields, with our gauge choice (2.51):

ds2 = a2[(1 + 2�)d⌧ 2 � 2B,idx
id⌧ � [(1� 2 )�ij]dx

idxj], (2.56)

' = '(0). (2.57)

Second, we expand it up to second-order in the perturbation variables, performing a

Taylor series, to get:

S(2) =
1

2

Z

d3xd⌘a2
h

� 6 
02 � 12H(�+  ) 0 � 9H2(�+  )2 � 2 ,i(2�,i �  ,i)

� 4H(�+  )B,ii � 4 0B,ii � 4H ,iB,i + 3H2B,iB,i

+

✓

�1

2
�2 � 3� +

3

2
 2 +

1

2
B,iB,i

◆

⇣

'(0)02 � 2V a2
⌘

+
�

2�2 � B,iB,i + 6 �
�

'(0)02
i

. (2.58)

This action gives first order equations of motion for the perturbative scalar fields. In the

calculation of this action, all zero and first-order terms vanish due to the background

equations of motion.

Next, we will eliminate the non-physical degrees of freedom in this action.
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2.4.2 Reduced second-order action

From now on, we are going to work in the Fourier space:

�(⌘, ~x) =

Z

d3k

(2⇡)3/2
�(⌘,~k)ei~x·

~k, (2.59)

 (⌘, ~x) =

Z

d3k

(2⇡)3/2
 (⌘,~k)ei~x·

~k, (2.60)

B(⌘, ~x) =

Z

d3k

(2⇡)3/2
B(⌘,~k)ei~x·

~k, (2.61)

and we define k2 ⌘ ~k · ~k. For simplicity, we will omit the arguments of the fields, but we

must keep in mind that we are in Fourier space, so fields depend on (⌘,~k).

From equation (2.58), we can see that neither B nor � have time derivatives. Thus,

they are auxiliary variables which can be worked out from their equations of motion in

terms of  , obtaining:

� = � 
0

H , (2.62)

B =
2Hk2 +  0'(0)02

2H2k2
. (2.63)

Replacing the expressions (2.62)-(2.63) into the action, we obtain the final second-order

action for  :

S(2) =
1

2

Z

d3kd⌘
a2'(0)02

H2

h

 
02 � k2 2

i

, (2.64)

where we have used some background equations to simplify. This action depends on  ,

which is a gauge-invariant variable and corresponds to the only physical scalar field in

inflation. Note that, as a consequence of the spatial isotropy of the background space-time,

the function  does not depend on the direction of ~k, but only on its magnitude.

Now that we have an action for the physical field, we would like to find the quantum

solution for  . In order to do this, we will apply the standard QFT rules of canonical

quantisation. First we will define a new gauge-invariant field u(⌘,~k):

u = z , where z ⌘ a
'(0)0

H , (2.65)
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such that the second-order action in, terms of u, has the form for a canonical scalar field

in Minkowski space with a time-dependent mass:

S(2) =
1

2

Z

d3kd⌘



u
02 � (k2 � z

00

z
)u2

�

. (2.66)

The time dependence of the mass is due to the interactions with the expanding back-

ground. The corresponding equation of motion for u is:

u
00
+ (k2 � z

00

z
)u = 0. (2.67)

Let us start now with the quantisation process.

2.4.3 Quantisation

In order to find an analytic solution for the quantum field u, we will use the slow roll

approximation.

The first step in the canonical quantisation is to obtain the momentum ⇡ canonically

conjugated to the field u:

⇡ ⌘ @L
@u0 = u0. (2.68)

Second, we promote ⇡ and u to operators ⇡̂ and û, respectively. They must satisfy the

following commutation relations at a given time ⌘:

[û(⌘, ~x), û(⌘, ~x0)] = [⇡̂(⌘, ~x), ⇡̂(⌘, ~x0)] = 0, [⇡̂(⌘, ~x), û(⌘, ~x0)] = i�(3)(~x� ~x0), (2.69)

where we have used ~ = 1. Also, û(⌘,~k) must satisfy the classical equation of motion:

û
00
+ (k2 � z

00

z
)û = 0. (2.70)

Operators û(⌘,~k) and û(⌘, ~x) are related by the Fourier transformation:

û(⌘, ~x) =

Z

d3k

(2⇡)3/2
û(⌘,~k)e~x·

~k. (2.71)

In order to find the solutions û and ⇡̂, satisfying (2.69) and (2.70), we expand them as it
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is usually done in quantum field theory:

û(⌘, ~x) =

Z

d3k

(2⇡)3/2

⇣

u~k(⌘)a~ke
i~k·~x + u~k(⌘)

⇤a†~ke
�i~k·~x

⌘

, (2.72)

⇡̂(⌘, ~x) =

Z

d3k

(2⇡)3/2

⇣

u~k(⌘)
0a~ke

i~k·~x + u~k(⌘)
⇤0a†~ke

�i~k·~x
⌘

, (2.73)

where {u~k(⌘), u⇤
~k
(⌘)} is a complete base for solutions of equation (2.67), and a~k with a†~k

are the annihilation and creation operators for a bosonic field, respectively. Then,

[a†~k, a
†
~k0
] = [a~k, a~k0 ] = 0, [a~k, a

†
~k0
] = �(3)(~k � ~k0). (2.74)

If we replace (2.72)-(2.73) into (2.69), we find they are consistent with the commutation

relations (2.74) only if the mode functions u~k obey the normalization conditions:

u0
~k
u⇤
~k
� u~ku

0⇤
~k
= i. (2.75)

In addition, we define the Fock space as the set of states that corresponds to successive

applications of creation operators to a vacuum state. The vacuum state |0i is defined by

the following condition:

a~k|0i = 0. (2.76)

The vacuum state is not defined until the solution u~k is completely specified. From

(2.75), it follows that u~k is a complex solution of a second-order di↵erential equation.

This means, in principle, it contains 4 undetermined constants. One of these constants

is irrelevant because it corresponds to a non-physical phase factor. Another constant

is determined by the condition (2.75). Then, for each ~k there remain two arbitrary real

numbers that are unspecified. Thus, to specify u~k completely, we just have to find an initial

condition or, equivalently, a specific normalization. For a free scalar field with constant

mass in Minkowski, we fix u~k, by adding the condition of minimising the vacuum energy

(hamiltonian). Since our mass is time-dependent, the hamiltonian is not conserved in

time, so we must give an initial condition at a given time.

In general, we define di↵erent vacua if we quantise in di↵erent coordinates and/or

if we minimise the hamiltonian at di↵erent times. Examples of the arbitrariness of the

vacuum in di↵erent coordinates are the Unruh e↵ect and the Hawking radiation. In these
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examples we can see that the vacuum defined in one coordinate system, corresponds to a

state containing a non-zero number of particles in the other coordinate system. The two

di↵erent vacua are related by the Bogoliubov transformations (see Mukanov (2004) for

more information).

From this point of view, we could define any state we wish to be the vacuum and build

a completely consistent quantum field theory. Then we must ask: which is the physical

vacuum state? To define the real vacuum, we will follow the standard QFT. There, the

vacuum is the zero-particle state (state with minimum energy) seen by an inertial observer

(in Minkowski). In the expanding Universe case, the vacuum will be the one defined in

conformal coordinates, because this space-time is just a Minkowski space with a time-

dependent conformal factor in front. This vacuum state is the zero-particle state seen by

a geodesic observer, that is, one in free-fall in the expanding space. As we said before, the

hamiltonian in our case is not constant. So, we will define the zero-particle state, as the

one which minimises the hamiltonian only in the regime of short wavelengths (k/a � H).

This is referred to as the Bunch-Davies vacuum, and it is justified because only early

short-wavelength states are observable today. Early long-wavelength states are stretched

in time to huge, unobservable scales. Also, as we will see later, in the short-wavelength

regime the solution is oscillating and then the choice of vacuum is clear.

Finally, the problem is reduced to find the functions u~k and their corresponding nor-

malisation. However, instead of determining the scalar field solution in general inflation,

we will use the well-known solution in de Sitter inflation. We will promote relevant pa-

rameters on which this spectrum depends to slowly varying functions of time, according

to the slow roll approximation.

From eq. (2.34), we can see that if ✏V = 0, then H is constant. This justifies the fact

that we are going to find the solution of u~k(⌘) in de Sitter space and use it as a first

approximation of inflation. Also, we can find that

z
00

z
=

a
00

a
(1 +O(✏v) +O(�V )) . (2.77)

So, in de Sitter space, the equation of motion for u~k is:

u
00
+

✓

k2 � a
00

a

◆

u = 0. (2.78)
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Also, since H is constant,

H = H0 ) a =
�1

H0⌘
) a

00

a
=

2

⌘2
= 2H2

0a
2, (2.79)

where H0 is the constant value of the Hubble parameter in de Sitter space. Then, (2.78)

becomes

u
00
+
�

k2 � 2H2
0a

2
�

u = 0. (2.80)

In the short-wavelength regime k � H0a (equivalently k|⌘| � 1), this equation turns out

to be

u
00
+ k2u ⇡ 0. (2.81)

In this equation, the choice of vacuum is clear. Its properly normalised solution is

u~k(⌘) =
1p
2k

e�ik⌘. (2.82)

Similarly, the properly normalised solution u~k to eq. (2.80) is:

u~k(⌘) =
1p
2k

✓

1� i

k⌘

◆

e�ik⌘. (2.83)

This solution satisfies (2.75) and has the normalisation (2.82) in the short-wavelength

regime. This solution defines unambiguously the Bunch-Davies vacuum state |0i. Notice
that in the asymptotic past ⌘ ! �1, we recover the vacuum solution (2.82).

Now that we have found the quantum solution for the only scalar degree of freedom in

de Sitter space, the next step is to calculate its spectrum, and promote relevant parameters

in order to find the spectrum during inflation.

2.4.4 Spectrum of perturbations

We continue focusing on scalar perturbations. We are interested in finding the spec-

trum Pu(⌘, k) of the quantum field u~k. The two-point Green function of û(⌘, ~x) can be
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calculated in terms of u~k using (2.71) and (2.72):

h0|û†(⌘, ~x)û(⌘, ~x0)|0i =
Z

d3k

(2⇡)3
|u~k|2ei

~k·(~x�~x0),

⌘
Z

dk

k
Pu(⌘, k)

sin(kr)

kr
, (2.84)

where r ⌘ ||~x� ~x0||, and the scalar field power spectrum is:

Pu(⌘, k) =
k3

2⇡2
|u~k(⌘)|2. (2.85)

Replacing the solution (2.83), we obtain

Pu(⌘, k) =
k2

4⇡2

✓

1 +
1

(k⌘)2

◆

. (2.86)

The function R:

R =  +H '(1)

'0(0)
(2.87)

is gauge-invariant and is related to the gauge-dependent spatial curvature perturbation  

on a generic slicing to the inflaton perturbation '(1) in that gauge. By construction,R rep-

resents the gravitational potential on comoving hypersurfaces where '(1) = 0, i.e. R =  .

This scalar field is useful because, as we will see, it freezes for super-horizon scales, letting

us connect the spectrum of inflation with the one during radiation/matter dominated era.

Now we go from de Sitter to inflation by promoting H0 to a slowly varying function

of time. Following our previous calculations, the relation between u and R is given by

(2.65):

u~k = a
p
2✏VR~k, (2.88)

here we have used the relation (2.34). Then, the spectrum for the scalar field R during

inflation is:

PR =
H2

8⇡2✏V

✓

1 +
k2

(Ha)2

◆

. (2.89)

Notice that for a given comoving momentum k, the spectrum in the super-Hubble

scales is nearly constant:

PR =
H2

8⇡2✏V
; k/a ⌧ H. (2.90)
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We say that the spectrum freezes after the first horizon crossing. One can demonstrate

more rigorously that R0 ⇡ 0 in super-Hubble scales (Dodelson (2003)), in inflation and

radiation/matter eras. This characteristic allows us to connect the perturbations during

inflation with the perturbations during radiation/matter era. Since the spectrum is almost

constant, we can approximate it to its value at the time t⇤ of the horizon crossing:

PR =
H2

⇤
8⇡2✏V

; k/a⇤ = H⇤. (2.91)

It is important to say that di↵erent modes cross back throught the horizon at di↵erent

times, so they have di↵erent amplitudes. The dependence on t⇤ in the spectrum, brings

a dependence on the momentum k. To show explicitly this dependence on k, we make a

power-law approximation, and we write the spectrum as:

PR =
H2

⇤
8⇡2✏V

✓

k

a⇤H⇤

◆ns�1

, (2.92)

where ns is called spectral index, and is calculated from:

ns � 1 =
d ln(PR)

d ln(k)

�

�

�

�

k=a⇤H⇤

= 2(⌘V � 3✏V ), (2.93)

where we have made use of the definition of the two slow roll parameters. The final

quantum spectrum for R predicted by inflation is written as:

PR = A2
Rk

ns�1. (2.94)

Then, inflation predicts a nearly scale-invariant spectrum, with a small deviation given by

ns� 1. The amplitude of the power spectrum AR and the scalar spectral index ns are not

determined by the theory because they depend on the slow roll approximation. They are

considered as cosmological parameters to be fixed by observations. In fact, observational

values for AR and ns can be found in Komatsu et al. (2011).

In Figure (2.1) we can see that, after the first horizon crossing, the perturbation re-

enters the horizon during radiation or matter dominated eras. This event marks the

transition from quantum theory to classical theory. By making use of R, it is possible

to calculate the power spectrum of the invariant gravitational potential � (see Mukanov,
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Feldman and Brandenberger (1992)) when this second horizon-crossing occurs (see Riotto

(2002)):

P� =

(

�

2
3

�2 PR if perturbation re-enters in Radiation-Dominated era
�

3
5

�2 PR if perturbation re-enters in Matter-Dominated era
(2.95)

which is also scale-invariant. This power spectrum for � after inflation is what really

matters because it is responsible for the energy density fluctuations, through the Poisson

equation. Value (2.95) is used as an initial condition for the perturbations in the study

of their late classical evolution (Dodelson (2003)).

On the other hand, in the linear theory of perturbation, the two-point function suf-

fices to define all the higher-order even correlation functions, while the odd correlation

functions vanish. Since the only prediction we have is the two-point function, inflation

predicts only Gaussian processes. This means that after the transition to a classical field,

the inflationary field is considered as a Gaussian random field: Fourier modes evolve

independently. From the central limit theorem of statistics it follows that the probabil-

ity density distribution of this classical field at any point in space is Gaussian, and it

depends only on the power spectrum. Then, only one function–the power spectrum at

horizon re-entry is required to specify all of the statistical properties of the initial den-

sity distribution (Dodelson (2003)). Non-Gaussian e↵ects can be studied by considering

second-order perturbation theory (see Maldacena (2003)).

In order to make testable predictions with inflation it is necessary to study the distri-

bution of particles when the inflaton decays into particles. Gravitational perturbations

a↵ect the particle distribution, and to calculate it one has to specify the relative abun-

dance of photons, neutrinos, baryons and cold dark matter before the second horizon

crossing, to be used as an initial condition. Understanding perturbations in a multi-

component medium is important both to analyse the anisotropy of the cosmic microwave

background and to determine the relation between the primordial spectrum of density

inhomogeneities created during inflation to the spectrum today. In general, perturbations

of this system are of entropy or adiabatic types. Standard inflation assumes adiabatic

fluctuations, where the entropy per baryon is conserved, and then a relation of the type

�⇢r/⇢r = (4/3)�⇢m/⇢m holds for a two-component fluid, where ⇢r and ⇢m are the energy

density of radiation and non-relativistic matter, respectively.
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Now, let us briefly mention tensor perturbations. All the process done for the scalar

perturbation fields can be also done for tensor perturbations hij(~x, ⌘) (see Dodelson

(2003)). Because of (2.14), hij has 2 degrees of freedoms, or polarisations, which are

usually indicated as p = +,⇥. More precisely,

hij(~x, ⌘) =

Z

d3k

(2⇡)3/2
hij(k, ⌘)e

i~k·~x, hij(k, ⌘) = h+(k, ⌘)e
+
ij(k) + h⇥(k, ⌘)e

⇥
ij(k), (2.96)

where e+ij and e⇥ij are the polarisation tensors, which have the following properties:

epij = epji, kiepij = 0, epii = 0,

epij(k) = ep⇤ij (�k), ep⇤ij (k)e
p0

ij(k) = 2�pp0 . (2.97)

Notice that hij is gauge-invariant and therefore represents a physical degree of freedom.

A nearly scale-free power spectrum is also found when perturbations re-enter the horizon:

PT =
4k3

2⇡2
|h|2 = 2H2

⇤
⇡2

✓

k

a⇤H⇤

◆nT

, (2.98)

where h = h⇥ = h+ and nT is the spectral index for these tensor perturbations, whose

value is:

nT =
d ln(PT)

d ln(k)

�

�

�

�

k=a⇤H⇤

= �2✏V . (2.99)

These tensor perturbations generate primordial gravitational waves. So, inflation deter-

mines not just one but two primordial spectra, corresponding to the scalar and tensor

perturbations. During inflation, no vector perturbations are generated.

Summarising, inflation predicts a nearly flat, homogeneous and isotropic Universe with

small primordial perturbations. The power spectrum for the scalar perturbation at the

second-horizon crossing, represented with R, is nearly scale-invariant, and its deviation

is given by the spectral index ns, which is near to 1. Also, fluctuations are assumed to be

Gaussian and adiabatic. These predictions are in accordance with observations of CMB

anisotropies and the galaxy distribution today (see Komatsu et al. (2011)).

In this section, we have calculated a second-order action for the only physical scalar

field present in the theory of inflation. We obtained a very simple action by fixing a

convenient gauge and eliminating all non-physical degrees of freedom. We have quantised
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this field through the standard canonical quantisation process used in QFT. We discussed

the problem related to the vacuum choice and used the Bunch-Davis vacuum, a state

with no particles in the asymptotic past. We calculated the spectrum of the curvature

perturbation field in the de Sitter background, but we finally extended it to inflation. We

showed the nearly scale-invariant form of this spectrum, and mentioned the Gaussian and

adiabatic characteristics of the predicted fluctuations. We finally mentioned the analogous

result for tensor perturbations.
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Chapter 3

Cosmological quantum perturbations

in the Eddington-Born-Infeld theory

In this chapter, we will show the same calculations done in the previous chapter,

now with the Eddington-Born-Infeld theory of gravity (EBI). We will first introduce the

EBI theory, explaining its motivation and showing its action along with the equations

of motion. We will see that this theory introduces modifications to General Relativity

for large curvatures. Then, we will study the cosmological background, a homogeneous

and isotropic Universe coupled to a perfect fluid. We will show the behaviour of the

scale factor during the early Universe, i.e. in the radiation-dominated era. Later, we will

consider linear perturbations on this background and write a second-order action for the

physical tensor and scalar perturbation fields. Finally, we will quantise these fields and

calculate their power spectra, using the method described in Hollands and Wald (2008).

Throughout this chapter we will work with 8⇡G = 1, c = 1, ~ = 1 and signature (+,-,-,-).

3.1 Motivating the Eddington-Born-Infeld gravity

There are di↵erent motivations to study modifications of the Einstein-Hilbert action.

One of them is the presence of singularities. Singularities have always been seen as

shortcomings, because they signify a breakdown of standard concepts. For that reason,

they are usually considered a sign of a missing piece in the theory. A very important

singularity is predicted in standard cosmology: the Big Bang. This singularity is physical,
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and represents the birth of our Universe as a spacetime. A prevailing opinion on this

phenomenon is that General Relativity breaks down at the Planck length scale, and a

quantum gravity theory is appropriate to describe it. However, since there is no such

quantum theory now, General Relativity can be modified at a classical level to address

this issue. This is the spirit of EBI theory.

The EBI action (Bañados and Ferreira (2010)) was originally a modification of Edding-

ton’s action of gravity (Eddington (1924)) using the idea of Born-Infeld’s action (Born

and Infled (1934)) for electromagnetism, which we will show briefly.

Born-Infeld theory of electromagnetism

The Born-Infeld action is a modification of Maxwell’s theory in order to avoid point-

charge related divergences. It is a nonlinear theory defined by

SBI[g, F ] =
1

b2

Z

d4x

✓p
�g �

q

|gµ⌫ + bFµ⌫ |
◆

, (3.1)

where b is a constant, Fµ⌫ the electromagnetic tensor and gµ⌫ the spacetime metric. Here,

|gµ⌫+ bFµ⌫ | means the absolute value of the determinant of gµ⌫+ bFµ⌫ . It can be observed

that for a static point-charge, it predicts a finite electric field and energy everywhere.

If we build the Taylor series for small bFµ⌫ up to second order, we will obtain

SBI[g, F ] ⇡ 1

4

Z

d4x (F µ⌫Fµ⌫) . (3.2)

This means that the Born-Infeld’s action reproduces the Maxwell theory for weak elec-

tromagnetic fields, but it introduces modifications in regions with strong fields.

Eddington’s Action of Gravity

As it is known, General Relativity can be described by di↵erent types of actions. One

of them is Eddington’s action. It is a purely a�ne gravitational action, defined by:

SEdd[�] = � 2

⇤

Z

d4x
q

|Rµ⌫(�)|, (3.3)

which corresponds to the square root of the absolute value of the determinant of Rµ⌫ , the
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symmetric part of the Ricci tensor built solely from the a�ne connection �↵�� . Here, the

connection is assumed to be symmetric in the two low indices. This action is completely

equivalent to the Einstein-Hilbert action with a cosmological constant. To see this we

derive the equation of motion for �:

O↵

✓

1

⇤

p

|R|Rµ⌫

◆

= 0, (3.4)

where the covariant derivative is defined in terms of the connection. We can define now

a 2-rank tensor:

gµ⌫ ⌘ � 1

⇤
Rµ⌫ . (3.5)

Then, the equation of motion turns out to be

O↵

⇣

p

|g|gµ⌫
⌘

= 0, (3.6)

which implies that

O↵ (g
µ⌫) = 0. (3.7)

This equation represents a relation between gµ⌫ and the connection. In fact, this is the

relation satisfied between a metric and its Christo↵el symbols. Then, the connection � is

the Christo↵el symbol of the metric gµ⌫ . So, eq. (3.5) turns out to be the Einstein-Hilbert

equation:

Rµ⌫(g) = �⇤gµ⌫ . (3.8)

Eddington’s action can be viewed as dual with the Einstein-Hilbert action, because the

Einstein-Hilbert action is proportional to the cosmological constant ⇤ and Eddington’s is

inversely proportional to ⇤.

The Eddington-Born-Infeld action of gravity

As an attempt to modify gravity in the same way Born and Infeld did with electromag-

netism, the Eddington-Born-Infeld action appears. It was proposed originally by Vollick

(see Vollick (2004)), and it is defined by:

SEBI[g,�] =
1



Z

d4x



q

|gµ⌫ � Rµ⌫(�)|�
p
�g

�

, (3.9)
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where  is a constant with dimensions of L2, g the metric and � the a�ne connection.

Since it depends on the metric and the connection, we say that this action is a modification

of Eddington’s action.

Even though this action looks like a clear analogy to Born-Infeld’s action, it does not

share the same characteristics. This action is completely equivalent to Einstein-Hilbert’s

action, without a cosmological constant, for all values of R.

In order to complete this gravitational theory, it is necessary to add matter. A simple

way to do this is proposed in Bañados and Ferreira (2010):

SEBI[g,�,�] =
1



Z

d4x



q

|gµ⌫ � Rµ⌫(�)|� �
p
�g

�

+ Sm[�, g], (3.10)

where Sm is the matter action which depends on a field �, and � is a non-zero constant

related to the cosmological constant:

⇤ =
�� 1


. (3.11)

Then, for � = 1, as in (3.9), this action describes a theory without a cosmological constant.

Now that matter has been added, this action is only equivalent to Einstein-Hilbert’s

action in a weak-field limit. This can be seen by building the Taylor series for small R

up to first order, where we would obtain:

SEBI[g,�,�] ⇡ �1

2

Z

d4x
p
�g



gµ⌫Rµ⌫(�) + 2

✓

�� 1



◆�

+ Sm[�, g], (3.12)

which is a metric-a�ne action equivalent to Einstein-Hilbert’s action. As we will confirm

later, as a result of adding matter, this action actually modifies General Relativity in

regions with strong fields, and it results in a complete analogy to Born-Infeld’s action for

electromagnetism.

In this section we explained the motivation to develop the EBI theory. We showed the

explicit form of this action, along with the two theories it is based on. We mentioned that

the EBI action reproduces General Relativity in the weak-field limit, but it introduces

modifications in regions with high curvature.

Next, we will study the EBI theory in more detail.
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3.2 Eddington-Born-Infeld Action

In this section we will study the EBI theory, its equations of motion and the fact that

it reproduces General Relativity, with more details.

Form now on, we will consider the Eddington-Born-Infeld action with matter written

as

S[q, g,�] = �1

2

Z

d4x

p
�q

✓

R(q) +
2



◆

� 1



�p
�qqµ⌫gµ⌫ � 2

p
�g

�

�

+Sm[�, g]. (3.13)

This action depends on two metrics: g and q, plus a matter field �. We notice that g

is the physical metric due to the fact it is coupled to matter. This action is completely

equivalent to (3.10) with � = 1 (see appendix A).

The equations of motion of this theory are

qµ⌫ = gµ⌫ � Rµ⌫(q), (3.14a)
p
�qqµ⌫ =

p
�ggµ⌫ + T µ⌫ , (3.14b)

where we have used that

T µ⌫ =
�2p�g

�Sm

�gµ⌫
. (3.15)

Also, we have to consider the conservation law for matter:

T µ⌫
;⌫ = 0. (3.16)

Now that we have got the equations of motion, we can study some characteristics of

this theory. From (3.14), we can see that if T µ⌫ = 0:

gµ⌫ = qµ⌫ ) Rµ⌫(g) = 0. (3.17)

Thus, in the absence of matter, action (3.13) reproduces General Relativity in vacuum.

This is one of the characteristics we mentioned in the previous section for action (3.9).

Moreover, if R is small, action (3.13) reproduces the Einstein-Hilbert action. Let us see

this with the equations of motion. Take (3.14a) to calculate the determinant of q and
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build the Taylor series up to first order in R:

qµ⌫ = gµ⌫ � Rµ⌫(q) )
p
�q =

p
�g � 1

2

p
�ggµ⌫Rµ⌫(g) +O

�

(Rµ⌫)
2
�

) qµ⌫ = gµ⌫ + gµ↵R↵�(g)g
�⌫ . (3.18)

Replacing this into (3.14b), we obtain:

✓p
�g � 1

2

p
�gR(g)

◆

(gµ⌫ + Rµ⌫(g)) =
p
�ggµ⌫ + T µ⌫

) Rµ⌫(g)� 1

2
R(g)gµ⌫ = T µ⌫ , (3.19)

which is the equation of motion of the Einstein-Hilbert action coupled to matter with a

stress-energy tensor given by T µ⌫ .

We conclude that the EBI theory of gravity reproduces General Relativity in the weak

field limit, and they are exactly the same in the absence of matter.

Next, we will study the EBI theory in the context of cosmology, in the same way as

we did in the previous chapter with General Relativity. We will see that modifications of

General Relativity for regions with strong fields bring a relevant consequence during the

early Universe.

3.3 Cosmological background and perturbations

In this section, we will study the equations of motion in the EBI theory for a homo-

geneous, flat and isotropic background Universe in presence of a perfect fluid. Also, we

will consider linear perturbations for both metrics and matter fields in the background

studied.

3.3.1 Background: homogeneous and isotropic Universe

In the EBI theory, we can study the solution for a homogeneous and isotropic Universe

coupled to a perfect fluid, with the following stress-energy tensor:

T µ⌫ = (⇢0 + p0)u
µ
0u

⌫
0 � p0g

(0)µ⌫ , (3.20)
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where the super index (0) for the metric and the sub index 0 for the rest energy density,

pressure and cuadrivelocity denote a background value. This background was studied in

Bañados and Ferreira (2010). It was found that the line element solution for both metrics

can be put into the following form:

ds(0)2g = a(⌘)2[d⌘2 � d~x · d~x], (3.21a)

ds(0)2q = b(⌘)2[z(⌘)�1d⌘2 � d~x · d~x], (3.21b)

where a(⌘), b(⌘) and z(⌘) are functions determined by the equations of motion, and ⌘

is the conformal time. Notice that the physical metric g has the standard form for a

homogeneous and isotropic expanding flat Universe, with a(⌘) being the scale factor. For

simplicity, from now on, we will omit the dependence on ⌘.

Replacing (3.21) into the equations of motion (3.14) and (3.16), given in the previous

section, we find the following relevant equations for this background:

p
zb2 � a2(⇢0 + 1)) = 0, (3.22)

a2(p0 � 1)
p
z + b2 = 0, (3.23)

a2zb2 � 6zb
02 + 2b4 � 3a2b2 = 0, (3.24)

⇢00 + 3 (⇢0 + p0)H = 0, (3.25)

where H ⌘ a0/a is the comoving Hubble parameter. By combining these equations we

obtain:

z = (1 + ⇢0)/(1� p0), (3.26)

b = a[(1� p0)(1 + ⇢0)]
1/4. (3.27)

Using all these equations of motion we find the Friedmann equation with p0 = !⇢0:

H2 = 3
a2


(1 + ⇢0)(1� ⇢0!)

2

⇥

1
2(1 + 3!)⇢0 � 1

⇤

+
p

(1 + ⇢0)(1� ⇢0!)3
⇥

3 + 3
2!(1 + 3!)2⇢20 +

3
4(3! � 1)(! � 1)⇢0

⇤2 . (3.28)

Let us study this equation in di↵erent cases:

• Late times: ! = �1, i.e. a Universe dominated by a cosmological constant. In this
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case:

H2 =
1

3
a2⇢0, (3.29)

which is the same Friedmann equation given by General Relativity.

• Small densities: ⇢0 ⌧ 1. In this case,

H2 = a2
1

3
⇢0, (3.30)

which is the one obtained in standard General Relativity, as we expected.

• Early times: ! = 1/3, i.e. a Universe dominated by radiation. In this case, the

Friedmann equation is

H2 = a2
(⇢0 + 1)(3� ⇢0)2

3(3 + 2⇢20)
2

✓

1

3
p
3

p

[(3� ⇢0)]3(⇢0 + 1) + ⇢0 � 1

◆

, (3.31)

which is di↵erent to that from General Relativity. Then, we expect to have an

evolution of the scale factor di↵erent to General Relativity at early times, but similar

at late times.

Since we are interested in calculating primordial perturbations, we will focus our at-

tention on the characteristics of this theory at early times. From (3.31), we can see two

stationary points where H(⌘) = 0: at ⇢0 = 3/ for  > 0, and at ⇢0 = �1/ for  < 0.

This means there is a minimum value aB of the scale factor which, according to (3.25),

corresponds also to a maximum value ⇢B of the energy density. The value of ⇢B is �1/

or 3/, depending on the sign of . The minimum value aB can be expressed in terms of

⇢B as aB = (⇢T/⇢B)�4, where ⇢T is the energy density of radiation today. Notice that the

value aB is di↵erent for the two signs of .

At these early times, the behaviour of the scale factor as a function of ⌘ near the

minimum of the scale factor aB is:

 > 0 : a(⌘) = aB

⇣

e
p

8
3aB(⌘�⌘0) + 1

⌘

, (3.32)

 < 0 : a(⌘) = aB

✓

1 +
2a2B
3||(⌘ � ⌘0)

2

◆

. (3.33)
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Figure 3.1 shows the evolution of the scale factor as a function of the physical time

t for both cases:  > 0 and  < 0, in the radiation-dominated era. When  > 0, the

early Universe initially grows exponentially fast with time (see (3.32)). When this is

happening we say we are in the Eddington period. The minimum of the scale factor aB

happens when t ! �1. As time goes on, the energy density is getting smaller, and the

scale factor evolves as predicted in General Relativity, so we say we are in the Einstein

period. On the other hand, when  < 0, the evolution of a(t) is di↵erent during the early

Universe: the scale factor diminishes until a bounce occurs. This is in the Eddington

period. Consequently, the minimum aB is reached in a finite time, after which the scale

factor evolves as it does in General Relativity, in the Einstein period. We recall that the

motivation of the EBI theory was to eliminate divergences, and here we can see that in

both cases the Big Bang divergence disappears indeed.

Figure 3.1: Scale factor as a function of physical time t. A minimum value aB is found in
both cases. For  > 0, the early Universe is initially expanding exponentially fast (blue
line), with a ! aB while t ! �1. For  < 0, there is a bounce (gold line), and the
minimum value aB occurs in a finite time. There is no presence of Big Bang in any case.

From (3.32)-(3.33), we can see that in both cases ä > 0 near aB. Therefore, there is a

period of inflation (accelerated expansion) during the early Universe. Then, the horizon

problem is solved naturally in this theory. There is no need to include any fundamental

scalar field with a special condition in the state equation, as we did in the previous chapter
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for the inflation theory.

Figure 3.2 shows the evolution of the comoving Hubble radius (blue and gold lines) as a

function of the scale factor a (in analogy to Fig. 2.1) during the radiation-dominated era,

for both cases of . In the case of  > 0, the comoving Hubble radius initially behaves as

Rc =
q

3
8aB

1
(a�aB) , but later it behaves as it is predicted by General Relativity, i.e. grows

linearly with a. On the other hand, for  < 0, it initially behaves as Rc =
q

3||
8aB

1p
a�aB

,

and later as predicted by General Relativity. This figure also shows a given comoving

scale � (green line), which first is a sub-Hubble scale, and thus, within a region of size

�, physical information is being transmitted. It then becomes a super-Hubble scale, and

then again a sub-Hubble scale.

Figure 3.2: Evolution of the comoving Hubble radius Rc (blue and gold lines) as a function
of the scale factor a, in a radiation-dominated Universe. There is initially a contracting
period of Rc, where it evolves di↵erently in the two cases of . Later, Rc grows linearly,
as predicted by General Relativity.

In both cases, the expansion of Rc is infinitely large as we approach aB. In particular, in

the early Universe, Rc was bigger than the size of the comoving horizon at the time of

the photon decoupling or earlier, and consequently there is no horizon problem.

On the other hand, to study the flatness problem we look at the Friedmann equation
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for a spatially non-flat Universe during the radiation-dominated era:

H2 = a2
(⇢0 + 1)(3� ⇢0)2

3(3 + 2⇢20)
2

✓

1

3
p
3

p

[(3� ⇢0)]3(⇢0 + 1) + ⇢0 � 1 +
k

a2
(⇢0 � 3)

◆

,

(3.34)

where k is a constant parameter related to the curvature of the space. Let us recall that

a critical density ⇢c is defined as the value of ⇢0 for a spatially flat Universe. Notice that

when H = 0, we have ⇢0 = ⇢c = ⇢B, consequently we have ⌦ = ⇢0
⇢c

= 1. Then, the

equations in this theory give naturally a time when the Universe has a critical energy

density ⇢c, and therefore they set the initial condition ⌦ = 1 at a = aB. At least for

 > 0, this initial condition is intuitive because as time goes on ⌦ always diverges from 1,

and consequently as we move backwards, after infinite time, ⌦ will approaches the value

1 asymptotically. In addition, since during the Eddington period the scale factor does not

grow much, ⌦ will never deviate much from 1, making it natural to have ⌦ very near 1

at the beginning of the Einstein period. This solves the flatness problem. For  < 0, the

condition ⌦ = 1 at a finite time (when a = aB) does not seem natural because there is

no reason to expect ⌦ = 1 at a = aB more than any other value. However, some authors

a�rm it solves the flatness problem (see Avelino and Ferreira (2012)).

As we mentioned in the previous chapter, the theory of inflation is needed to describe

the early Universe well in General Relativity. The initial motivations were the horizon

and the flatness problems. In this subsection we saw that these problems do not arise in

the EBI theory. It seems, then, that this theory could be a good alternative to inflation,

where no unknown scalar field is forced to be considered. But, for this to be true, the

EBI theory needs to reproduce the major predictions of inflation: primordial nearly scale-

invariant spectra for scalar and tensor perturbations at the second horizon-crossing. In

order to see whether these predictions for fluctuations are the same in this theory, we will

study the linear theory of perturbations.

3.3.2 Theory of linear perturbations

As in chapter 2, we will assume that primordial quantum perturbations were originated

during the early Universe. Because of gravitational instability, these perturbations grew

until structures were formed through gravitational collapse. An important di↵erence is

that in the previous chapter, the early Universe was dominated by the energy of a scalar
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field, but in the EBI theory, the early Universe is the standard radiation-dominated era.

For this reason, from now on, we will use ! = 1/3.

We will now study the linear perturbation theory for the EBI action, with the back-

ground described above. We will follow the same classification for metric perturbations

as in section 2.1.3. Since the three types of perturbations are independent, we will study

each one separately.

In order to describe perturbations of a general perfect fluid, we will follow the idea

presented in Mukanov, Feldman and Brandenberger (1992). We can think of the fluid as

formed by many particles with rest mass m0. The perturbation fluid is then described by

a shift vector �µ which shifts the position of a test particle from xµ
0 , where it would be

in an unperturbed Universe. Notice that we can decompose the fluid shift vector into the

transverse and longitudinal parts:

�µ = (�0,�i), where �i = �iT + @i�, such that @i�
iT = 0. (3.35)

Here, we shift the three spatial indices by using the metric �ij and its inverse �ij. We can

see that the scalar part of the shift vector is � and �0, which will couple to scalar metric

perturbations. The vector part is �iT , which will couple to vector metric perturbations.

And there is no tensor part in �µ, so tensor metric perturbations do not couple to matter

perturbations. Notice that we will be using the equation of state p = 1
3⇢, which is satisfied

for zero and first order perturbations.

Scalar perturbations

Consider scalar perturbations for both metrics on the background described above:

ds2q = b2[z�1(1 + 2�1)d⌘
2 � 2B1,i

p
z
�1
dxid⌘ � [(1� 2 1)�ij + 2E1,ij]dx

idxj], (3.36)

ds2g = a2[(1 + 2�2)d⌘
2 � 2B2,idx

id⌘ � [(1� 2 2)�ij + 2E2,ij]dx
idxj]. (3.37)

We read from here that the scalar perturbation fields for both metrics are �1, B1, E1,  1

for q and �2, B2, E2,  2 for g.

On the other hand, these scalar metric fields are coupled to matter perturbations. If we

write the stress-energy tensor as (2.10) and consider only the scalar matter perturbations,
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the stress-energy tensor perturbation will be

�T 0
0 =(⇢0 + p0)(3 2 � E2,ii � �,ii),

�T i
0 =(⇢0 + p0)�

0
,i,

�T 0
i =� (⇢0 + p0)(B2,i + �0

,i),

�T i
j =� 1

3
(⇢0 + p0)(3 2 � E2,ll � �,ll)�

i
j. (3.38)

From here we can see that �0 does not appear, then � is the only scalar matter degree of

freedom. For more information about matter perturbations and this stress-energy tensor

perturbation, see Appendix B.

Finally, we have 9 scalar perturbation fields in the EBI theory with a perfect fluid: 4

for each metric plus 1 for matter.

Vector perturbations

We consider vector perturbations for both metrics:

ds2q = b2[z�1d⌘2 + 2S1i

p
z
�1
dxid⌘ � (�ij + F1i,j + F1j,i)dx

idxj], (3.39)

ds2g = a2[d⌘2 + 2S2idx
id⌘ � (�ij + F2i,j + F2j,i)dx

idxj]. (3.40)

From here we can see that the vector perturbations are S1i and F1i for the metric q, and

S2i and F2i for g. Each vector perturbation satisfies (2.12). We recall that we shift from

upper to lower spatial indices and vice versa by using the metric �ij and its inverse �ij.

If we consider only the vector matter perturbations, the stress-energy tensor pertur-

bation is:

�T 0
0 = 0,

�T i
0 = (⇢0 + p0)�

iT 0
,

�T 0
i = �(⇢0 + p0)(�

iT 0 � S2i),

�T i
j = 0, (3.41)

where viT ⌘ �iT 0
represents the vorticity of the fluid and satisfies viT ,i = 0.

Finally, we have 5 vector perturbation fields: 2 for each metric plus 1 of matter.
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As we said in the previous chapter, vector perturbations have no cosmological relevance

in General Relativity with a perfect fluid. This theory shows the same behaviour. To see

this, let us write the equations of motion for the perturbation fields in the Fourier space

with a fixed gauge.

The EBI action is invariant under the following vector transformations:

F̃2i = F2i � ⇠iT , S̃2i = S2i + ⇠iT
0
, ṽiT = viT + ⇠iT

0
,

F̃1i = F1i � ⇠iT , S̃1i = S1i + ⇠iT
0
, (3.42)

where ⇠iT is an infinitesimal arbitrary vector field, satisfying ⇠iT ,i = 0.

With the gauge choice F̃1i = 0, the relevant equations of motion are:

F2i = 0, (3.43)

S2i �
p
zS1i + (z � 1)viT = 0, (3.44)

2S1ia
2 � 2a2S2i

p
z � S1ik

2 = 0, (3.45)

2a2F2i

p
z + z(2S1ih+ S 0

1i) = 0. (3.46)

Using the first 3 equations we can write all the fields in terms of the vorticity field viT ,

and obtain:

dviT

d⌘
+

2
h

h(k2 + 2a2(z � 1)) + z0

4z

⇣

2(z � 1)a2 + k2 (3z�1)
(z�1)

⌘

+ k2H
i

(z � 1)(k2 + 2a2(z � 1))
viT = 0. (3.47)

The solution of this equation is viT ⇡ constant during the radiation-dominated era and

viT / 1/a during matter-dominated era. As a consequence, the vector perturbation of the

physical metric is S2i ⇡ constant during the Eddington period (early radiation-dominated

era) and S2i / 1/a2 during the Einstein period of radiation and matter. Since all these

perturbations decay, primordial vector fluctuations would have a significant amplitude at

present only if they were originally very large. There is no reason to expect such large

primordial fluctuations, so from now on we will completely ignore them, and focus only

on scalar and tensor perturbations.
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Tensor perturbations

We consider tensor perturbations for both metrics:

ds2q = b2[z�1d⌘2 � (�ij + h1ij)dx
idxj], (3.48)

ds2g = a2[d⌘2 � (�ij + h2ij)dx
idxj]. (3.49)

From here we can see that the tensor perturbations are h1ij for the metric q, and h2ij for

g. These perturbations satisfy (2.14). Again, we use the metric �ij and its inverse �ij to

shift spatial indices. Since in this theory there are no tensor matter perturbations, the

perturbed stress-energy tensor to be considered here is zero.

To sum up, in this section we calculated the main equations governing the evolution

of a homogeneous and isotropic Universe in expansion, in the EBI theory. As expected,

we found at early times a di↵erent behaviour to that of General Relativity. During the

radiation era, we saw two di↵erent evolutions of the Universe, depending on the sign

of : one where the scale factor grows exponentially fast, and another where there is a

bounce. In both cases, the Universe does not have a beginning nor an end; there is a

minimum value for the scale factor and a maximum energy density. So, there is no Big

Bang divergence. Also, in both cases there is an early period of inflation (accelerated

expansion), which allows us to avoid the horizon problem. In addition, the  > 0 case

solves the flatness problem. We started the linear perturbation theory in the homogeneous

and isotropic background. We showed both metrics and stress-energy tensor perturbations

during the radiation-dominated era explicitly. We showed that vector perturbations have

no cosmological relevance, which allows us to ignore them.

Having all the perturbation fields written, the next step is to proceed with the quantum

theory. In order to do that, we must calculate an action for all the physical degrees of

freedom, and quantise them. However, we must first discuss the gauge-fixing.

3.4 Gauge invariance

The EBI theory has a symmetry that comes from considering general coordinate trans-

formations. However, in the linear perturbation theory, this action is invariant only under

infinitesimal transformations up to first order.
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Let us consider infinitesimal coordinate transformations. Suppose we perform the

following change of coordinates:

x̃µ = xµ + ⇠µ, (3.50)

where ⇠µ = ⇠µ(x) is an arbitrary (infinitesimal) vector function. We split ⇠µ,

⇠µ = (⇠0, ⇠i), where ⇠i = ⇠iT + @i⇠ and @i⇠
iT = 0. (3.51)

Again, the spatial index i is moved with the euclidean metric. Since tensor, vector and

scalar parts are decoupled, ⇠0 and ⇠ are related to the scalar perturbations and ⇠iT is

related to vector perturbations. Since there is no tensor gauge freedom, fields h1ij and

h2ij are gauge-invariant. Therefore, during this section we will focus only on scalar per-

turbations.

Under the infinitesimal coordinate transformation (3.50), the scalar perturbation fields

described previously in the cosmological background will transform to tilde fields as (see

Mukanov, Feldman and Brandenberger (1992)):

�̃2 = �2 �
a0

a
⇠0 � ⇠0

0
,  ̃2 =  2 +

a0

a
⇠0, B̃2 = B2 + ⇠0 � ⇠0, Ẽ2 = E2 � ⇠,

�̃1 = �1 �


b0

b
� z0

2z

�

⇠0 � ⇠0
0
,  ̃1 =  1 +

b0

b
⇠0, B̃1 = B1 � ⇠0

p
z +

⇠0p
z
, Ẽ1 = E1 � ⇠,

�̃ = �+ ⇠. (3.52)

As we explained in section 2.3, these gauge freedoms can cause some confusions when

trying to calculate physical quantities. To avoid this problem, we will follow the same

idea as in inflation, i.e. use a manifestly gauge-invariant framework. Specifically, we are

going to fix all the gauge freedoms and eliminate non-physical perturbation fields, in such

a way that the final physical degrees of freedom are gauge-invariant, as expected. This

method is very useful. In fact, in the EBI theory we found 9 scalar perturbation fields,

which apparently would lead to very long calculations. However, we will see that this

number is easily reduced to 1 if we follow this method.

Next, we will show the gauge choice that will be used in the next sections to study

quantum scalar perturbations.
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3.4.1 Gauge choice

In section 2.3 we discussed the subtleties related to the gauge choice when one is

working with the action, as we will do in the quantum theory of perturbations. We can

only fix the value of fields whose equations of motion are redundant. For that reason,

here we will follow the same procedure as in that section to make an appropriate gauge

choice.

Let us consider a general variation of the EBI perturbed action (action of second order

in the 9 scalar perturbation fields):

�S =

Z

(Eq�1��1 + Eq 1� 1 + EqE1�E1 + EqB1�B1 + Eq��� (3.53)

+Eq�2��2 + Eq 2� 1 + EqE2�E2 + EqB2�B2) , (3.54)

where Eqn is the equation of motion for the field n. But if we replace these variations of

fields �n by the gauge variations given in (3.52), we will obtain �S = 0, because the EBI

action is gauge-invariant. Let us do this and perform some integration by parts:

�Sgauge =

Z

✓

Eq0�1 � Eq�1



b0

b
� z0

2z

�

+ Eq 1

b0

b
+

EqB1p
z

+ Eq0�2 + (Eq 2 � Eq�2)
a0

a

+EqB2

⌘

⇠0 +
⇣

� EqE1 + (EqB1

p
z)0 � EqE2 + Eq0B2

+ Eq�

⌘

⇠. (3.55)

Since �Sgauge = 0, both parentheses must be zero because ⇠ and ⇠0 are completely arbi-

trary. This gives us two relations between the equations of motion:

Eq0�1 � Eq�1



b0

b
� z0

2z

�

+ Eq 1

b0

b
+

EqB1p
z

+ Eq0�2 + (Eq 2 � Eq�2)
a0

a
+ EqB2 = 0,

�EqE1 + (EqB1

p
z)0 � EqE2 + Eq0B2

+ Eq� = 0.

(3.56)

Any field that can be worked out from these two last equations has a redundant equation

of motion. Then, the possibilities are:

( 1, 2) + (E1, E2,�), (3.57)

Equation (3.57) means that we can set one field from the first parenthesis plus one field
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from the second parenthesis to zero. For convenience in later calculations, we will choose

 ̃1 = 0, �̃ = 0. (3.58)

These conditions fix ⇠ and ⇠0 uniquely to be:

⇠ = ��, ⇠0 = �b0

b
 1. (3.59)

We have managed to reduced our initial problem with 9 scalar perturbation fields to

one with 7 fields. This gauge choice is good because if we define the following gauge-

invariant field:

⇣ ⌘  2 �
1

3(⇢0 + p0)
�⇢, (3.60)

where �⇢ is the first order energy density fluctuation given by the �T 0
0 component of

(3.38), it turns out to be proportional to the perturbative metric variable E1 in the

Fourier space in our gauge choice:

⇣ = �1

3
k2E1. (3.61)

This variable is called curvature perturbation on slices of uniform energy density and we

will use it to represent the only physical scalar degree of freedom in this theory. We expect

to have only one physical scalar degree of freedom because General Relativity without

matter has none, and therefore the EBI theory without matter neither. As a consequence,

all scalar degrees of freedom arise from the matter action, and we already saw that there

is only one: �.

In this section we studied the gauge symmetry of the EBI theory, showing explicitly

how the scalar perturbation fields transform. We also found all the possibilities to fix the

scalar gauge freedoms, and chose one for later use.

The next step is to study the quantum linear perturbation theory for scalar and tensor

perturbations.
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3.5 Quantum perturbation theory

Following the same ideas of section 2.4, we will first obtain an action to second order in

all the perturbations. After that, we will calculate a reduced action for only the physical

fields.

3.5.1 Second-order action

In this subsection we will find the perturbed second-order EBI action for all the scalar

and tensor perturbation fields. This second-order action will give first order equations

of motion for the perturbation fields. We will initially make calculations only for the

gravitational part of the EBI action, and later for the matter part. In order to keep a

general calculation, we will not fix the gauge freedoms in this subsection, but in the next

one.

We split the gravitational part of the EBI action (3.13) into two parts:

S1 = �1

2

Z

d4x
p
�q

✓

R(q) +
2



◆

, (3.62)

and

S2 =
1

2

Z

d4x(
p
�qqµ⌫gµ⌫ � 2

p
�g). (3.63)

Gravitational scalar action

We must replace in S1 and S2 all the scalar perturbation fields given in (3.36) and

(3.37), and expand a Taylor series up to second order. For example, we have to expand

the determinants:

p
�q

(0)
=

b4p
z
,

p
�q

(1)
=

b4p
z
[�1 � 3 1 + E1,ii] ,

p
�q

(2)
=

b4p
z



�1

2
�2
1 � 3�1 1 +

3

2
 2
1 +

1

2
B1,iB1,i �

1

2
E1,iiE1,jj � E1,ii 1 + E1,ii�1

�

,

(3.64)
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and

p
�g

(0)
= a4,

p
�g

(1)
= a4 [�2 � 3 2 + E2,ii] ,

p
�g

(2)
= a4



�1

2
�2
2 +

1

2
B2,iB2,i � 3�2 2 + �2E2,ii +

3

2
 2
2 �

1

2
E2,iiE2,jj � E2,ii 2

�

,

(3.65)

where the super indices (0), (1) and (2), mean zero, first and second-order perturbations,

respectively. The calculations for obtaining the second-order action are straightforward

but long. Action S1 up to second order is:

S
(2)
1 =

1

2

Z

d4x
b2p
z

h

�6z 
02
1 � 12zh(�1 +  1) 

0
1 � 9zh2(�1 +  1)

2 � 2 1,i(2�1,i �  1,i)

� 4
p
zh(�1 +  1)(B1 �

p
zE 0

1),ii + 4zh 0
1E1,ii � 4

p
z 0

1(B1 �
p
zE 0

1),ii � 4h 1,iB1,i

+ 6zh2(�1 +  1)E1,ii � 4
p
zhE1,ii(B1 �

p
zE 0

1),jj + 4
p
zhE1,iiB1,jj + 3zh2E1,iiE1,jj

+3zh2B1,iB1,i

i

�
p�q

(2)


, (3.66)

where h ⌘ b0/b. Here some total derivatives have been omitted, and we have used the

background equations of motion given in subsection 3.3.1.

On the other hand, action S2 up to second order turns out to be:

S
(2)
2 =

1

2

Z

d4x
a2b2


p
z



3

2
(�2

1 +  2
1)(z � 1) + �1((z � 1)(3 1 � E1,ii)� 6 2 + 2E2,ii � 2z�2)

+  1(6 2 � (z � 1)E1,ii � 2E2,ii � 6z�2)�
1

2
(z � 1)(E1,iiE1,jj +B1,iB1,i)

�2E1,ii( 2 � z�2 + E2,ii) + 2
p
zB1,iB2,i

i

� 2a4
✓

�1

2
�2
2 +

1

2
B2,iB2,i � 3�2 2 + �2E2,ii +

3

2
 2
2 �

1

2
E2,iiE2,jj � E2,ii 2

◆

. (3.67)

Then, the total second-order scalar gravitational action is (3.66)+(3.67).
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Gravitational tensor action

We must now replace (3.48) and (3.49) in S1 + S2. Notice that even though tensor

metric perturbations do not couple to matter perturbations, this action will not be the

same as the one of General Relativity because there is a di↵erent background matter.

As we explained in the previous chapter, an expansion in two polarisations p = (+,⇥)

for the tensor modes is usually done (see (2.96)). For simplicity, we will choose a specific

direction ~k = kẑ so tensor perturbations lie in the xy plane. As a result, tensor metric

perturbations can be written as:

ds2q = b2
⇥

z�1d⌘2 � [(1 + h1+)dx
2 + (1� h1+)dy

2 + dz2 + 2h1⇥dxdy]
⇤

(3.68)

ds2g = a2
⇥

d⌘2 � [(1 + h2+)dx
2 + (1� h2+)dy

2 + dz2 + 2h2⇥dxdy]
⇤

(3.69)

where these perturbations depend on ⌘ and z.

We expand the gravitational action up to second order. For example, the determinants

are:

p
�q

(0)
=

b4p
z
,

p
�q

(1)
= 0,

p
�q

(2)
= � b4

2
p
z

⇥

(h1+)
2 + (h1⇥)

2
⇤

, (3.70)

and

p
�g

(0)
= a4,

p
�g

(1)
= 0,

p
�g

(2)
= �a4

2

⇥

(h2+)
2 + (h2⇥)

2
⇤

, (3.71)

Replacing these expressions into S1 and S2 we can write the tensor gravitational action

ST = S1 + S2 up to second order as:

S
(2)
T = S

(2)
⇥ + S

(2)
+ , (3.72)
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where

S(2)
p =

1

2

Z

d4x
b2

2
p
z



zh
02
1p +

2


a2h2

1p � h2
1p,z +

2


a2
�

h2
2p � 2h1ph2p

�

�

. (3.73)

We can see that the action S
(2)
T has two copies of the same action S

(2)
p for each polarisation.

Since there is no matter contribution to the tensor action, S(2)
T corresponds to the total

tensor second-order action.

Hydrodynamical scalar action

Now, we will calculate the second-order scalar matter action. The action for hydro-

dynamical matter, formed by particles with rest mass m0, is:

Sm = �
Z

d4x⇢
p
�g, (3.74)

where ⇢ is the total energy density, which can be written as

⇢ = n[m0 + ⇧], (3.75)

where n is the number density of particles in the fluid, and ⇧ is an energy associated to

the fluid. For more information about this matter action, see Appendix B.

The matter action to second order in the longitudinal part � of the shift vector �µ is:

S(2)
m =

Z

d4xa4


1

2
⇢0�

2
2 + p0

✓

3

2
 2
2 � 3�2 2 + �2E2,ii +

1

2
B2,iB2,i �

1

2
E2,iiE2,jj � E2,ii 2

◆

+ (⇢0 + p0)

✓

1

2
�

02
,i +B2,i�

0
,i + �2�,ii

◆

�1

6
(⇢0 + p0)(3 2 � E2,ii � �0

,ii)
2

�

. (3.76)

Here we can see that even if we set � = 0, this second-order matter action would contribute

to the total second-order action. This is because scalar perturbations are coupled to

matter perturbations.

Finally, the total scalar second-order action S
(2)
s is (3.66)+(3.67)+(3.76). From this

scalar action we can see that all perturbation fields, except for E1,  1, and �, have no

time derivatives. Fields with no time derivatives correspond to auxiliary variables, which

can be worked out algebraically from their own equations of motion in terms of the fields

55



that have time derivatives. Then, in principle, we could reduce the total action to an

action only depending on E1,  1, and �. Furthermore, if we use our gauge choice (3.57),

the action would only depend on E1 or, equivalently, on ⇣. This is exactly what we will

do in the next subsection.

Analogously, the total tensor second-order action S
(2)
T is (3.72). We can also find the

auxiliary variables h2p. Then the action could be reduced to one with only two degrees

of freedoms: h1p. We recall that since these fields are gauge-invariant they correspond to

physical variables.

3.5.2 Reduced second-order action

Now, we will find a reduced second-order action containing only physical degrees of

freedom: one scalar and two tensor. These reduced actions are to be quantised later.

Action for scalar perturbations

We have said that in this theory there is only one physical degree of freedom and we

want to find an action for it. In order to do that, we will fix the gauge and eliminate

all the auxiliary variables present in the total second-order action (3.66)+(3.67)+(3.76).

In this way, we reduce the problem with 9 fields to a problem with only 1. To start the

reduction process of the total second-order action we will primarily need all the equations

of motion. To simplify calculations, we go to Fourier space and use our gauge choice

(3.57) immediately. We perform the following replacement in the total action:

�2(⌘, ~x) =

Z

d3k

(2⇡)3/2
�2(⌘,~k)e

i~k·~x, �1(⌘, ~x) =

Z

d3k

(2⇡)3/2
�1(⌘,~k)e

i~k·~x,

E2(⌘, ~x) =

Z

d3k

(2⇡)3/2
E2(⌘,~k)e

i~k·~x, E1(⌘, ~x) =

Z

d3k

(2⇡)3/2
E1(⌘,~k)e

i~k·~x,

B2(⌘, ~x) =

Z

d3k

(2⇡)3/2
B2(⌘,~k)e

i~k·~x, B1(⌘, ~x) =

Z

d3k

(2⇡)3/2
B1(⌘,~k)e

i~k·~x,

 2(⌘, ~x) =

Z

d3k

(2⇡)3/2
 2(⌘,~k)e

i~k·~x,

and define k2 ⌘ ~k ·~k = k2
x+k2

y +k2
z . Here, we didn’t show � nor  1, because they were set

to zero in our gauge choice. For simplicity, we will omit the dependence of these fields.
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Varying the whole action S
(2)
s with respect to these scalar perturbation fields in Fourier

space, we obtain the following equations of motion:

��2 :
�

�1 � �2 + 3 + E1k
2
�

z � E2k
2 � 3 2 = 0,

� 2 : 3(�2 � �1)�
�

E2k
2 + 3 2

�

z + E1k
2 = 0,

�E2 : 3(�1 � �2) + k2 (3E1 � 4E2) + z
�

3 2 + k2E2

�

= 0,

�B2 : B2 �
p
zB1 = 0,

��1 : 2zhE 0
1k

2 � (3a2 � 2b2)�1 + a2z�2 + 3a2 2 � 2(h
p
zB1 +

1

2
a2(E1 � E2))k

2 = 0,

�E1 : 2zh�0
1 � (�2b2 + a2)�1 + a2( 2 � k2E2 + k2E1 � z�2) = 0,

�B1 : a2
p
zB2 � B1a

2 + 2
p
zh�1 = 0.

From the first 4 equations, we can obtain all the perturbation fields for g: E2, B2, �2, and

 2, in terms of the perturbation fields of q:

�2 =
(3 + z2)�1 + k2E1(z + 1)(z � 1)

3 + z2
,

 2 =
�k2(z � 1)(1/3z � 1)E1

3 + z2
,

B2 =
p
zB1,

E2 = E1.

We replace these results in the 3 equations left. �1 and B1 can also be worked out in

terms of E1:

�1 = �
(z � 1)(zhk2E 0

1 +
1
2k

2E1(z � 1)a2)a2

(3(z � 1)a2 + 2k2)h2z
,

B1 = 2
hzE 0

1k
2 + 1

2k
2a2E1(z � 1)

(3a2(z � 1) + 2k2)h
p
z

.

Finally, we have obtained all fields in terms of E1. If we write these fields in terms of

⇣, by using relation (3.61), and replace them in the total second-order action obtained in

the previous subsection, we will get a final reduced action in Fourier space for the field ⇣:

S(2)
s =

1

2

Z

c1

⇣

⇣
02 � c2⇣

2
⌘

d3kd⌘, (3.77)
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where the coe�cients c1 and c2 depend on time ⌘ and k:

c1 =
18b2a2(z � 1)

p
z

X
, (3.78)

c2 = 9b2a2
n

2H(z2 + 3)
⇥

9(z � 2)(z � 1)2a4 + 12k2(z � 1)(z � 2)a2 + 2k42(z � 3)
⇤

+ z0(z2 + 3)
⇥

9(z � 1)2a4 + 12k2(z � 1)a2 + 22k4
⇤

+hX
⇥

12z(z � 1)(1 + z2)a2 + (3 + 5z + z2 + 7z3)k2
⇤ 

/
�

X22h
p
z(z2 + 3)c1

 

,

(3.79)

where X ⌘ 3(z � 1)a2 + 2k2. Notice that since the background is homogeneous and

isotropic, the field ⇣ depends on ⌘ and ||~k||.
For later use, we will perform a redefinition of the field ⇣:

⇣(⌘, k) =
v(⌘, k)p

c3
; c3 =

c1
b2
p
z
, (3.80)

such that the scalar action looks like that of a scalar field coupled to the metric q with a

time-dependent mass:

S(2)
s =

1

2

Z

b2
p
z
⇣

v
02 � c4v

2
⌘

d3kd⌘. (3.81)

Here, c4 is a time-dependent factor related to c1, c2, and c3:

c4 = c2 +
1

4

✓

c03
c3

◆2

� 1

2

✓

c03
c3

◆0

� 1

2

✓

c01
c1

◆✓

c03
c3

◆

. (3.82)

Action for tensor perturbations

Analogously, we go to Fourier space

h2p(⌘, ~x) =

Z

d3k

(2⇡)3/2
h2p(⌘,~k)e

i~k·~x; h1p(⌘, ~x) =

Z

d3k

(2⇡)3/2
h1p(⌘,~k)e

i~k·~x,
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and calculate the equations of motion from S
(2)
T :

�h1p : h
00

1p +

✓

2h+
z0

2z

◆

h0
1p +

✓

k2

z
+

2

z
a2
◆

h1p �
2

z
a2h2p = 0,

�h2p : h2p � h1p = 0.

Using the last equation we can write h2p in terms of h1p and replace them in the action

calculated in the previous section, to obtain the reduced second-order action in Fourier

space for tensor perturbations:

S
(2)
T = S

(2)
⇥ + S

(2)
+ , (3.83)

where

S(2)
p =

1

2

Z

b2
p
z

✓

h
02
1p �

k2

z
h2
1p

◆

d3kd⌘. (3.84)

Notice this action looks like that of a scalar field coupled to the metric q with a time-

dependent mass. Since the two fields h1p are the same, from now on, we will call them

h = h1+ = h1⇥ and work with the action S
(2)
p for only one of them.

Finally, we calculated an action for scalar and tensor perturbations containing only

the physical degrees of freedom, one scalar and two tensor. Next, in order to understand

the fields we are working with, we will study their classical behaviour.

3.5.3 Classical solution

Let us study the behaviour of the classical solution of ⇣(⌘, k) and h(⌘, k).

Scalar solution

First, Let us analyse the behaviour of ⇣ in the Eddington period, where a is near the

minimum aB. The equation of motion for ⇣ can be approximated in both cases of :

• Case  > 0:

⇣
00
= 0 ) ⇣(⌘, k) = Ak⌘ +Bk, (3.85)

where Ak and Bk are some integration constants, depending on k.

59



• Case  < 0:

⇣
00
+

2

⌘
⇣ 0 +

k2

3�2⌘2
⇣ = 0 ) ⇣(⌘, k) = Ak⌘

n+ +Bk⌘
n� , (3.86)

where � ⌘ aB
p

2/(3||) and n± ⌘ �1
2 ±

1
2

p

1� 4k2/(3�). Also, here we have set

a(⌘ = 0) = aB.

From these two solutions (3.85) and (3.86) we can see that in both cases there is a

divergence as a ! aB. In the case of  > 0 we have a linear divergence in ⌘, and for  < 0

a polynomial one.

Figure 3.3 shows the evolution of ⇣ (blue and gold lines) as a function of the conformal

time ⌘, for both cases of  during the radiation-dominated era. These plots represent a

numerical solution with arbitrary initial conditions, so they show a typical behaviour of

⇣. In the case of  < 0, we set a(0) = aB. In this figure we observe the divergences shown

by equations (3.85) and (3.86) in the Eddington period, when ⌘ ! �1 for  > 0 and

⌘ = 0 for  < 0. During the Einstein period, both solutions are equal.

Figure 3.3: Evolution of ⇣ (blue and gold lines) as a function of ⌘ during the radiation-
dominated era, with arbitrary initial conditions. A divergence as a ! aB is observed in
both cases of .

60



Tensor solution

The equation of motion for h coming from action (3.84) is:

h
00
+

(b2
p
z)

0

b2
p
z

h0 +
k2

z
h = 0. (3.87)

The behaviour of h near aB is:

• Case  > 0:

h
00
= 0 ) h(⌘, k) = Ak⌘ +Bk. (3.88)

• Case  < 0:

h
00
+

2

⌘
h0 +

k2

3�2⌘2
h = 0 ) h(⌘, k) = Ak⌘

n+ +Bk⌘
n� . (3.89)

From (3.88) and (3.89) we can see that h has the same divergence as ⇣.

Figure 3.4 shows the evolution of h (blue and gold lines) as a function of the conformal

time ⌘, for both cases of . These plots represent a numerical solution with arbitrary initial

conditions, so they show a typical behaviour of h. Again, we see the divergences in the

Eddington period, and the same behaviour of the fields for late radiation.

Finally, we see there is a scalar and tensor instability in the limit a ! aB in both cases

of . For  > 0, the divergence is linear in the infinite past. For  < 0, the divergence is

a power of time when the bounce occurs. This characteristic had already been observed

for the tensor perturbations in Escamilla-Rivera, Bañados and Ferreira (2012).

Since the amplitude of these fields was large near aB, at some point in time, the linear

theory of perturbations breaks down because �gµ⌫/g
(0)
µ⌫ ⌧ 1 is violated. This problem can

be caused by the linear perturbation theory (corrections of higher order could change this

behaviour) or by the EBI theory itself. A similar problem appears in inflation, where the

physical fields diverge in the Big Bang. However, we will consider only the region where

the linear theory is still valid, and forget about this problem.

Having studied scalar and tensor perturbations classically, the next step is to quantise

them in order to obtain a prediction for the power spectrum at the second horizon crossing,

in analogy to the previous chapter.
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Figure 3.4: Evolution of h (blue and gold lines) as a function of ⌘ during the radiation-
dominated era, with arbitrary initial conditions. A divergence as a ! aB is observed in
both cases of .

3.5.4 Alternative inflation

In the previous chapter we showed that primordial perturbations were produced by

quantum fluctuations of the inflationary field and its information was contained in its

two-point correlation function. These perturbations were originated in their ground state

at sub-Hubble scales, specifically in the Bunch-Davies vacuum. When they enter the

horizon, the quantum states become characterised by a large occupation number and the

system collapses into classical states. These classical states represent a random spectrum

of perturbations whose variance is given by the quantum correlations evaluated at this

quantum-to-classical transition point.

However, di↵erent vacua (or, equivalently, di↵erent initial conditions) for perturba-

tions could have been given for inflation (Allen (1985)), which would have given di↵erent

results for the power spectra at the second horizon crossing point. It seems that we cannot

go forward on this problem without a precise knowledge of a theory of quantum gravity.

This theory could tell us exactly how the Universe leaves the Planck scale, and then give

a correct initial condition for the fluctuations. Since some cosmologically relevant wave-
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lengths, at some early stage, could have been trans-Planckian (quantum regime beyond

the reach of our theories) during inflation, there is no justification for any choice of vac-

uum, which casts doubts on the validity of the cosmological perturbation predictions of

inflation (Armendariz-Picon 2007). In view of this di�culty, along with the fact that the

inflationary field is still unknown, among others, the question is whether the inflationary

explanation is unique.

One alternative proposal is given by Hollands and Wald (Hollands and Wald (2008)).

They point out that inflation does not really solve the flatness problem, since one still

needs special initial conditions to initiate the inflation period. This is the motivation to

develop a mechanism that results in a scale-free power spectrum for fluctuations in General

Relativity, without assuming the existence of a fundamental scalar field as matter. Let

us describe the main ideas behind this alternative proposal.

Hollands-Wald mechanism

Let us assume that there is a fundamental length called l0. Semiclassical physics

applies to phenomena on spatial scales larger that l0, so modes emerge from an unknown

fundamental description of spacetime at that scale. Therefore, we may assume that a

perturbation with physical wavelength �ph is e↵ectively born at l0 in the ground state of a

flat spacetime. Since �ph grows in time, the perturbations are continuously being created.

Hollands and Wald applied the previous mechanism for scalar perturbations in Gen-

eral Relativity during the early Universe, which they consider as the radiation-dominated

era, and obtained a scale-free power spectrum at the second horizon crossing. The initial

condition set with this method for perturbations is di↵erent than the Bunch-Davies vac-

uum. In order to have the correct amplitude for the power spectrum, l0 is chosen to be

l0 = 105lp, with lp the Planck scale.

3.5.5 Initial conditions

To quantise the perturbations, we promote them to quantum operators, in the same

way we did in the previous chapter:

⇣̂(⌘,~k) = ⇣~k(⌘)a~k + ⇣⇤~k(⌘)a
†
~k
, ĥ(⌘,~k) = h~k(⌘)a~k + h⇤

~k
(⌘)a†~k, (3.90)
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where a~k with a†~k are the annihilation and creation operators, respectively. Functions

⇣~k(⌘) and h~k(⌘) are some solution to the classical equations of motion for ⇣ and h, whose

normalisations will be given by initial conditions.

If we followed the same ideas as in the previous chapter to quantise the perturbations,

we would set the initial conditions by minimising the vacuum energy in the limit a ! aB,

as analogy to the Bunch-Davies vacuum, which minimises the vacuum energy in the

asymptotic past ⌘ ! 1. However, with the arguments given in the previous subsection,

we know that it would be valid also to fix another initial condition. In fact, we will follow

the Hollands-Wald mechanism to put initial conditions in the quantum solutions ⇣̂(⌘,~k)

and ĥ(⌘,~k), albeit with a slight modification. We will define1 l0 =
p

|| = 104lp, and

assume that a mode with comoving wavenumber k is created at ⌘⇤ such that b⇤/k = l0.

Notice that we have defined this relation2 with the scale factor of the metric q, instead of

g. Then, the initial condition for the perturbations will be that they are in the ground

state at ⌘⇤.

We can estimate the scale at which ⌘⇤ occurs if l0 ⇡ 10�31m and k ⇡ 10�26m�1 is of

order of our present cosmological horizon:

• Scale factor: b ⇡ 10�57 and a ⇡ aB(1 + 10�110)

• Energy density: ⇢0 ⇡ 10�8⇢p, where ⇢p is the Planck energy density.

We can see here that ⌘⇤ occurs in the Eddington period, when � is a sub-Hubble scale.

This is valid for all cosmologically relevant scales.

Next, we will calculate the quantum perturbations ⇣̂ and ĥ for the case of  > 0 at ⌘⇤,

using the Hollands-Wald mechanism3. In order to do that, we will apply the standard QFT

rules for a scalar field in an adiabatic approximation to the actions calculated previously

1We have chosen this order of magnitude of l0 in order to have the correct order of magnitude for the
power spectrum of scalar perturbations.

2This modification is motivated by the form of the second-order action for tensor perturbations. In
General Relativity the action for h has the form of an action for a scalar field coupled to the metric g,
but in the EBI theory it appears coupled to q.

3We will not consider the case of  < 0 because it is not well behaved near ⌘⇤. In particular, it is
found that the mass-like term in the action is positive, instead of negative as in an action for a massive
scalar field.
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for v and h at ⌘⇤, and use relation (3.80) to find the quantum solution for ⇣. This result

will give the initial value of the quantum perturbations, which, as we will discuss later,

must be extrapolated in time upto the Einstein period of radiation, where the power

spectra will be calculated.

Scalar case

Since the transition to a semiclassical theory happens in the Eddington period for all

relevant scales, we approximate S
(2)
s when a ⇡ aB for  > 0:

S(2)
s ⇡ 1

2

Z

d⌘d3k 4a2B

✓

v
02 � 5k2

9aB
(a� aB)v

2

◆

. (3.91)

We write the quantum solution of v as:

v̂(⌘,~k) = v~ka~k + v⇤~ka
†
~k
, (3.92)

By making an adiabatic approximation4 near ⌘⇤ in action (3.91), we can use the standard

QFT rules to quantise v and then write v~k at ⌘⇤ as:

v~k(⌘⇤) =
1

p

8a2B!⇤
ei!⇤⌘⇤ ; !⇤ =

s

5k2

9aB
(a⇤ � aB). (3.93)

However, in ⌘⇤ the following holds:

b⇤
k

⇡ 2a3/4B (a⇤ � aB)1/4

k
=

p
. (3.94)

Then, !⇤ and ⌘⇤ are explicitly,

!⇤ =

p
5k3

12a2B
; ⌘⇤ =

2
p
3p

2aB
ln

✓

k
p


2aB

◆

. (3.95)

The relation between v and ⇣ is given by (3.80), which in the Eddington period is

4The adiabatic approximation consists in taking an interval of time small enough to allow us to consider
the background functions as e↵ectively constant. In our specific calculations, we take an interval of time
around ⌘⇤.
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approximately:

⇣ ⇡ �
r

1

6
v. (3.96)

Therefore, the solution ⇣~k at ⌘⇤ is:

⇣~k(⌘⇤) = �
s

1

4
p
5k3

ei!⇤⌘⇤ . (3.97)

Tensor case

Analogously, we approximate the tensor action for h in the Eddington period for  > 0:

S
(2)
T ⇡ 1

2

Z

d⌘d3k 4a2B

✓

h
02 � k2

aB
(a� aB)h

2

◆

, (3.98)

and write h~k at ⌘⇤ as:

h~k(⌘⇤) =
1

p

8a2B!̃⇤
ei!̃⇤⌘⇤ ; !̃⇤ =

s

k2(a⇤ � aB)

aB
. (3.99)

Using (3.94) we find that !̃⇤ is explicitly:

!̃⇤ =
k3

4a2B
, (3.100)

and then

h~k(⌘⇤) =

r

1

2k3
ei!̃⇤⌘⇤ . (3.101)

Finally, we have obtained initial conditions (3.97) and (3.101) at ⌘⇤ for scalar and

tensor quantum perturbations, respectively. Notice that in this subsection we made the

quantisation of the scalar and tensor actions written in the form of a scalar field coupled

to the metric q. In general, we could have written the actions in a di↵erent form, say as

a scalar field coupled to the metric g, which would have given a di↵erent result for the

initial conditions. This fact is related to the problem of defining di↵erent vacua, which we

mentioned previously and need further analysis. However, in this theory, when making

the quantisation as we just did we obtain the correct form for the power spectra, as we

will show later.
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3.5.6 Spectrum of perturbations

In the previous chapter we mentioned that an initial nearly scale-invariant power spec-

trum for the gauge-invariant gravitational potential � at the second horizon crossing, as

it is in inflation, is in agreement with the observations for CMB temperature anisotropies

and matter distribution today, when the extrapolation in time is made classically in

General Relativity. We also found a nearly scale-invariant power spectrum for tensor

perturbations. For that reason, our objective is to calculate the power spectrum of � and

h at the second horizon crossing in the EBI theory.

Scalar spectrum

The gauge-invariant gravitational potential � is defined by

� ⌘ �2 + a�1[a(B2 � E2)]
0. (3.102)

We will calculate its power spectrum in the same way as in the previous chapter: we

will first find the power spectrum of the curvature perturbation ⇣ at the second horizon

crossing and then relate this value with the power spectrum of � during radiation/matter-

dominated eras, by using (2.95). This relation is valid now because during the Einstein

period for super-Hubble scales ⇣ ' R (see Riotto (2002)).

Since, as we said in the previous chapter, R freezes for all super-Hubble scales in

General Relativity, then ⇣ freezes for all super-Hubble scales in the Einstein period. Con-

sequently, the power spectrum of ⇣, for a super-Hubble scale, at any time of the Einstein

period of radiation, is the same than at the second horizon crossing.

Therefore, in order to find the power spectrum of ⇣ at the second horizon crossing time,

we will extrapolate ⇣~k numerically in time using the classical equation of motion and the

initial condition (3.97), but also its time derivative at ⌘⇤. After that, we will evaluate

the numerical solution in a particular time during the Einstein period of radiation, say

c⌘ = 100m, and calculate |⇣~k|2 there. Since the power spectrum of ⇣~k is

P⇣(⌘, k) =
k3

2⇡2
|⇣~k(⌘)|2, (3.103)

the described calculations will give us the power spectrum at c⌘ = 100m, i.e. at the
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second horizon crossing time. We are interested in knowing the dependence of P⇣ in k for

super-Hubble scales, so we apply this numerical process to di↵erent orders of magnitude

k = 10i m�1, where i goes from �26 to �16. Figures (3.5) and (3.6) show this result.

Figure (3.5) shows the logarithmic value in base 10 of |⇣|2k3, which is the power spectrum,

at c⌘ = 100m for the 11 di↵erent values of k. We observe that the power spectrum is

scale-invariant because there is no dependence on the value of k. Only to check this

characteristic, we make the two plots in figure (3.6). Here we have the logarithmic value

of |⇣|2k2 (asterisks), where a clear dependence on k on the form of 1/k is observed. We

also have the logarithmic value of |⇣|2k4 (crosses), where a linear dependence on k is

observed.

Finally, we conclude that the power spectrum of ⇣ at the second horizon crossing has

the following form:

P⇣(k) = A2
⇣k

ns�1, (3.104)

where A⇣ is an amplitude and ns is the scalar spectral index. Because of relation (2.95),

this last result means that the power spectrum P� is also scale-invariant. From the

numerical calculations we find that for the 11 wavenumbers:

P⇣ ⇠ 10�9; ns � 1 ⇠ 10�28 � 10�46, (3.105)

where the range for ns appears because it depends on k. From here we can see that the

dependence of the power spectrum on k is incredibly small, so it can be neglected.

Tensor spectrum

To calculate the power spectrum of h at the second horizon crossing we do the same

as for the scalar field ⇣. We perform numerical calculations to find |h~k|2 at c⌘ = 100m,

i.e. for super-Hubble scales. Figures (3.7) and (3.8) show the results. Again, from these

three plots we conclude that the power spectrum is scale-invariant:

PT(k) =
2k3

⇡2
|h~k|2 = A2

Tk
nT , (3.106)

where AT is an amplitude and nT is the tensor spectral index. From the calculations we
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Figure 3.5: Logarithmic value of |⇣|2k3 as a function of log10(k), with k being the comoving
wavenumber in MKS units. A scale-invariant function is observed.

find that for the 11 scales,

PT ⇠ 10�8; nT ⇠ 10�28 � 10�46, (3.107)

where, again, the range for nT appears because it depends on k. From here we can see

that the dependence of the power spectrum on k is incredibly small, so it can be neglected.

Now, we can compare our estimations for the power spectra of scalar and tensor

perturbations with observations, which are in agreement with a scalar power spectrum of

the form (see Komatsu et al. (2011)):

PR(k) = A2
R

✓

k

k0

◆ns�1

, (3.108)

where k0 = 0.002 Mpc�1, and

PR(k0) = (2.430± 0.091)⇥ 10�9; ns � 1 = �0.032± 0.012. (3.109)
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Figure 3.6: Logarithmic value of |⇣|2k2 (asterisks) and |⇣|2k4 (crosses) as a function of
log10(k), with k being the comoving wavenumber in MKS units.

From (3.105) we can see that the amplitude of the scalar power spectrum has the right

order of magnitude. Since the experimental data agree with a constant scalar spectral

index, we expected to have, at least, a small dependence of ns on k but from the numerical

calculation we can see that it roughly goes like k2, and from (3.105) we see that it has

the wrong order of magnitude.

Also, a maximum value for the tensor-to-scalar ratio r(k) has been measured for k0

(see Komatsu et al. (2011)):

r(k0) ⌘
PT(k0)

PR(k0)
< 0.24, (3.110)

which in our case is near to 10. The disagreement in the scalar spectral index ns and the

ratio r could be a problem of the theory or the vacuum choice. In either case, further

research is required.

To sum up, in this section we have calculated a second-order action for all the pertur-

bation fields. After that, we eliminated all the non-physical fields in order to find actions

containing only the physical scalar and tensor perturbations. We found only 1 physical
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Figure 3.7: Logarithmic value of |h|2k3 as a function of log10(k), with k being the comoving
wavenumber in MKS units. A scale-invariant function is observed.

Figure 3.8: Logarithmic value of |h|2k2 (asterisks) and |h|2k4 (crosses) as a function of
log10(k), with k being the comoving wavenumber in MKS units.
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scalar degree of freedom ⇣ and two equal tensor degrees of freedom h. We showed the

classical behaviour of these fields during the radiation-dominated era, and observed an

instability as a ! aB for both types of perturbations, and in both cases of . We quan-

tised canonically the physical fields and used the Hollands-Wald mechanism to fix initial

conditions on the quantum solutions. Finally, we extrapolated the quantum solutions in

time for 11 di↵erent wavenumbers in order to calculate the power spectra at the second

horizon crossing time. We found a scale-invariant power spectrum for both scalar and

tensor perturbations, although not all the numerical estimations are in agreement with

observations. Notice that in our calculations perturbations are also Gaussians, which

results from considering only first order perturbations, and also assumed to be adiabatic.
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Chapter 4

Conclusions

General Relativity is today the most successful theory of gravity. However, in the

context of cosmology, it is not exempt of problems. It predicts the event of the Big

Bang, which is a physical divergence since physical quantities such as the energy density

diverge. In addition, the theory of inflation in General Relativity, which solves the horizon

problem and the flatness problem, and gives an explanation for structure formation, has

been criticised mainly for its assumption of a fundamental unknown scalar field with some

peculiar characteristics.

In an attempt to eliminate the Big Bang divergence, the Eddington-Born-Infeld (EBI)

theory appears. It is a classical gravitational theory which introduces modifications to

General Relativity in regions with high curvature. This characteristic brings impor-

tant consequences during the early Universe. For an expanding, flat, homogeneous and

isotropic Universe coupled to a perfect fluid, the theory predicts two possible evolutions of

the Universe, both of them with no Big Bang, i.e. the Universe has an infinite past, with a

minimum value aB for the scale factor and an early period of accelerated expansion. This

result is within the assumption that the early Universe was dominated by radiation, as it

is usually done. As a consequence, at least one of the possible behaviours of the Universe

solves the horizon and flatness problem.

Since the horizon and flatness problem were the main reason to develop the inflation

theory, the previously mentioned cosmological results in the EBI theory motivated us to

consider the EBI theory as a good cosmological model and, particularly, a possible alter-

native to the inflation theory. For this reason, we studied inhomogeneities in our Universe
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by assuming that they were generated by primordial quantum first order perturbations

in the classical cosmological background recently described. We used the standard classi-

fication for perturbations: scalar, vector and tensor. We found that vector perturbations

seem to be not relevant because they decay in an expanding Universe. Consequently, we

focused on scalar and tensor perturbations only. By making a study of the gauge sym-

metry present in the EBI theory, we were able to write an action containing the physical

perturbation degrees only: one scalar and two equal tensor perturbations. We made a

classical study of these fields and found a divergence as a ! aB. This divergence, which

is also present in the inflation theory, is not necessarily bad because it could be a result

of the perturbation theory.

Finally, we used the canonical formalism to quantise these scalar and tensor physical

fields. We argued that there were some ambiguities in making a vacuum choice and,

consequently, we were free to use any procedure we wanted. We decided to use the

Hollands-Wald mechanism. With this procedure, we found a scale-free power spectra

for scalar and tensor perturbations, which is expected from observations. However, our

numerical estimations do not fit all the experimental values. This last disagreement can

be caused by a problem of the EBI theory or the quantisation procedure, and it will be

left as future work.
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Appendix A

Eddington-Born-Infeld actions

In this appendix, we will show that actions (3.10) and (3.13) are equivalent. Let’s

consider the case with � = 1 (no cosmological constant). Consider

S[q, g,�,�] = �1

2

Z

d4x
p
�q

✓

qµ⌫Rµ⌫(�) +
2



◆

� 1



�p
�qqµ⌫gµ⌫ � 2

p
�g

�

+ Sm[�, g].

(A.1)

The equation of motion coming from variations of q is:

�q : �1

2
qµ⌫

✓

q↵�R↵�(�)�
2



◆

+Rµ⌫(�) +
1


gµ⌫ �

1

2
qµ⌫(q

↵�g↵�) = 0. (A.2)

We now rewrite this equation. We take its trace:

qµ⌫Rµ⌫(�) = �4


+

1


qµ⌫gµ⌫ (A.3)

and replace it into (A.2), obtaining

qµ⌫ = gµ⌫ � Rµ⌫(�). (A.4)

Here, we have obtained an algebraic equation for qµ⌫ , thus we can replace q, as a function

of g and �, into the action (A.1) and obtain an action depending only on g, � and �:

S[g,�,�] =
1



Z

d4x

✓

q

|gµ⌫ � Rµ⌫(�)|�
p
�g

◆

+ Sm[�, g], (A.5)
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which is exactly the same as (3.10).

Now, we will show that (A.1) is also equivalent to (3.13), and consequently the latter

is equivalent to (3.10). To do this, we must get � as a function of the other variables,

by means of its equation of motion, and replace it back into the action. We vary action

(A.1) with respect to �:

�S =

Z

d4x
p
�ggµ⌫�Rµ⌫

=

Z

d4x
p
�qqµ⌫ (O↵��

↵
µ⌫ � O⌫��

↵
µ↵)

=

Z

d4x
⇥

O↵(
p
�qqµ⌫��↵µ⌫)� O⌫(

p
�qqµ⌫��↵µ↵)

⇤

�
Z

d4x
⇥

O↵(
p
�qqµ⌫)� O�(

p
�qqµ��⌫↵)

⇤

��↵µ⌫

=

Z

d4x
⇥

@↵(
p
�qqµ⌫��↵µ⌫)� @⌫(

p
�qqµ⌫��↵µ↵)

⇤

�
Z

d4x
⇥

O↵(
p
�qqµ⌫)� O�(

p
�qqµ�)�⌫↵

⇤

��↵µ⌫ . (A.6)

The first integral is a boundary term so we will disregard it. Then, the equation of motion

is:

O↵(
p
�qqµ⌫)� O�(

p
�qqµ�)�⌫↵ = 0. (A.7)

By contracting the indices ↵ and µ, we obtain an equation which can be replaced back

into (A.7), obtaining:

O↵

�p
�qqµ⌫

�

= 0 ) O↵ (q
µ⌫) = 0. (A.8)

This equation is a relation between the metric q and the connection �. In fact, this

relation is the one satisfied by a metric and its Christo↵el symbols. Then, � is the

Christo↵el symbol of the metric q:

�↵µ⌫ =
1

2
q↵�(qµ�,⌫ + q⌫�,µ � qµ⌫,�). (A.9)
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Now, we replace this into action (A.1) and get an action depending only on q, g and �:

S[q, g,�] = �1

2

Z

d4x
p
�q(R(q) +

2


)� 1


(
p
�qqµ⌫gµ⌫ � 2

p
�g) + Sm[�, g], (A.10)

which is the same that (3.13).

Finally, we have concluded that (3.13), (3.10) and (A.1) are all completely equivalent.
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Appendix B

Perfect Fluid

B.1 Action for a perfect fluid

A perfect fluid has the following stress-energy tensor:

T µ⌫ = (⇢+ p)uµu⌫ � pgµ⌫ , (B.1)

where ⇢ is the energy density of the fluid in rest, p is the pressure, uµ the 4-velocity

and gµ⌫ the metric coupled to the fluid. The hydrodynamical action for a fluid with the

stress-energy tensor showed above can be written as:

Sm = �
Z

⇢
p

(�g)d4x, (B.2)

where g is the determinant of the metric. We are interested in the theory of linear

perturbations. For that purpose, we will rewrite the energy density term ⇢ in the action.

Let’s consider the conservation equation:

T µ⌫
;µ = 0. (B.3)

Replacing here the explicit expression (B.1), we get:

(⇢+ p)u⌫ ;µu
µ + [(⇢+ p)uµ];µu

⌫ � p;µg
µ⌫ = 0, (B.4)
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where we have used that gµ⌫ ;µ = 0. If we contract the equation (B.4) with u⌫ , we get

(⇢+ p)u⌫ ;µu
µu⌫ + [(⇢+ p)uµ];µu

⌫u⌫ � p;µu
µ = 0. (B.5)

But u⌫ ;µuµu⌫ = 0 and u⌫u⌫ = 1, then

[(⇢+ p)uµ];µ � p;µu
µ = 0 ) (⇢+ p)uµ

;µ � ⇢;µu
µ = 0. (B.6)

Now, let’s define a new variable n such that

dn

n
=

d⇢

⇢+ p
, (B.7)

where we have considered that there is an equation of state p = p(⇢). Then, equation

(B.6) turns out

(⇢+ p)uµ
;µ � n;µ

(⇢+ p)

n
uµ = 0 ) (nuµ);µ = 0. (B.8)

This last equation looks like an equation of continuity of mass. Therefore, we can think

that this perfect fluid is composed of many test particles with a rest mass m0, and a

number density n. Then, we can write the energy density ⇢ as consisting of a rest mass

energy plus an energy ⇧(n):

⇢ = n[m0 + ⇧(n)]. (B.9)

The energy ⇧ can be found by di↵erentiating (B.9) and comparing it with (B.7):

d⇢ = dn
⇢

n
+ nd⇧ = dn

(⇢+ p)

n
) d⇧ = dn

p

n2
. (B.10)

Integrating this, we obtain

d⇧ = �d
⇣p

n

⌘

+
dp

n
) ⇧ =

Z

dp

n
� p

n
. (B.11)

Finally, we found that the hydrodynamical action for a perfect fluid is given by (B.2),

where ⇢ is (B.9), such that (B.8) and (B.11).

It is important to write the hydrodynamical action (B.2) in terms of n because ⇢ is
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not a basic dynamical degree of freedom, then it is not possible to immediately expand

the action in terms of perturbations of ⇢. A basic dynamical degree of freedom is one

that characterises the fluid flow, and hence it is convenient to think the fluid as formed

by test particles with number density n.

B.1.1 Verification

Now, we should verify that the variation of the action Sm, with respect to the metric

g, gives the stress-energy tensor for a perfect fluid. This means that we should obtain:

�gSm = �1

2

Z

T µ⌫�gµ⌫
p
�g. (B.12)

Let’s variate the action in (B.2):

�gSm = �
Z



d⇢

dn
�gn+ ⇢

�g
p�gp�g

�p
�g. (B.13)

But we know that
�g
p�gp�g

=
1

2
gµ⌫�gµ⌫ . (B.14)

Also, using (B.10), we have

d⇢

dn
=
⇢

n
+ n

d⇧

dn
=

(⇢+ p)

n
. (B.15)

Replacing these two last equations in (B.13), we obtain

�gSm = �
Z



(⇢+ p)

n
�gn+

⇢

2
gµ⌫�gµ⌫

�p
�g. (B.16)

The calculation of �gn still remains. In order to do this, we will find n by solving

equation (B.8). To solve this equation, we introduce Lagrange coordinates ai, which label

the particles in the fluid, and an a�ne parameter �, which fixes the point along a particle

trajectory. We write the flow in terms of the comoving coordinates as

x↵ = f↵(ai,�). (B.17)

80



Then, the number density ⇢ can be described by an arbitrary function F (ai) of the La-

grange coordinates and the Jacobean J :

J =
D(x↵)

D(ai,�)
, (B.18)

between the comoving and Lagrange coordinates. n evolves in time in the following way:

n(xµ) =
F (ai)p�gJ

r

gµ⌫
@fµ

@�

@f ⌫

@�
. (B.19)

It can be verified that this expression for n solves the continuity equation (B.8), if it taken

into account that the cuadrivelocity is

u↵ =
@f↵

@�
q

gµ⌫
@fµ

@�
@f⌫

@�

. (B.20)

Now, we can find �gn by variating (B.19). Since neither the Jacobian nor the function

F (ai) depend on g, we have

�g
�

⇢(xµ)
p
�g

�

=
F (ai)

J
�g

 

r

gµ⌫
@fµ

@�

@f ⌫

@�

!

=
F (ai)

J

gµ⌫
@fµ

@�
@f⌫

@�
q

g↵�
@f↵

@�
@f�

@�

=
F (ai)

J

1

2

r

g↵�
@f↵

@�

@f�

@�
uµu⌫�gµ⌫ because of (B.20)

=
1

2
⇢
p
�guµu⌫�gµ⌫ because of (B.19) (B.21)

Then, using this las result along with (B.14), we find that

�gn =
n

2
[uµu⌫ � gµ⌫ ] �gµ⌫ . (B.22)

Replacing this into (B.13), we finally get:

�gSm = �1

2

Z

[(⇢+ p)uµu⌫ � pgµ⌫ ] �gµ⌫
p
�g. (B.23)
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By comparing this with (B.12), it follows that the stress-energy tensor is exactly that of

a perfect fluid.

B.2 Second order action for a perfect fluid

Let’s consider now perturbations up to second order in the action.

We saw that the hydrodynamical action is

Sm = �
Z

⇢
p

(� g), (B.24)

where

⇢ = n[mo + ⇧], with ⇧ =

Z

dp

n
� p

n
. (B.25)

We can expand this action up to second order assuming a background solution and vari-

ations of the metric and n:

S(2)
m = �

Z

⇢0
p
�g

(2)
+(⇢0+ p0)

✓

n(1)

n0

p
�g

(1)
+

n(2)

n0

p
�g

(0)
◆

+
!

2
(⇢0+ p0)

(n(1))2

n2
0

p
�g

(0)
,

(B.26)

where
p�g and n were expanded up to second order as: n = n0 + n(1) + n(2) and

p�g =
p�g

(0) +
p�g

(1) +
p�g

(2). Also, here we have used that p = !⇢.

Variations of
p�g are only due to metric perturbations, but variations in n are due to

metric perturbations and matter perturbations. In order to calculate variations of
p�g

we must use the perturbed metric and then perform a taylor expansion up to order 2 in

all the perturbation variables. On the other hand, to calculate variations of n(x) we must

first express matter perturbations with a vector �µ, which shifts the flow of the fluid.

Then, the full flow is

x↵ = f↵(ai,�) = f↵0 (a
i,�) + �↵, (B.27)

where f↵0 (a
i,�) is the flow in the background universe.

Second, we express n(x) in terms of n(x+ �) and expand it up the second order in �.

We evaluate n(x+�) using (B.19) and calculating separately the individual terms in this

formula up to second order in all the perturbation variables (� and metric perturbations).
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B.2.1 Particular case

If we consider the particular case of a perturbed metric given by (3.37), some individual

terms of (B.19) are

J(x+ �) = 1 +
@�↵

@x↵
+

1

2

✓

@�↵

@x↵

◆2

� 1

2

@�↵

@x�
@��

@x↵
, (B.28)

p
�g(x+ �) =

p
�g(x)

�

1 + 4H�0 + 2
�

H0 + 4H2
�

(�0)2

+ (�2 � 3 2 + E2,ii)
0�0 +(�2 � 3 2 + E2,ii),j�

j
o

, (B.29)

where H = a0/a, and
p�g(x) is given by (3.71). We can continue doing this, and we will

obtain

n = n0 + n(1) + n(2) =n0



1 +
�

3 2 � E2,ii � �i
,i

�

+

✓

�B2,i�
i0 � 1

2
�i0�i0

� 1

2
B2,iB2,i +

15

2
 2
2 +

1

2
E2,iiE2,jj + E2,ijE2,ji � 5 2E2,ii

�(3 2 � E2,ii)�
i
,i + (�0�i0 +

1

2
�i

,j�
j +

1

2
�j

,j�
i),i

◆�

, (B.30)

where �i = �,i. Replacing this result into (B.26), we obtain the action (3.76), up some

total derivatives.

For vector and tensor perturbations, calculations are completely analogous. If we had

considered (3.40), we would have obtained:

n = n0[1� S2i⇠
i0 � 1

2
�i0�i0 � 1

2
S2iS2i + (F2i,j + F2j,i)(F2i,j + F2j,i) +

1

2
�i

,j�
j
,i], (B.31)

where ⇠i,i = 0.

If we had considered (3.49), we would have obtained:

n = n0[1 +
1

4
hijhji]. (B.32)
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B.3 Perturbed stress-energy tensor

Also, in this particular case, we can calculate the perturbed stress-energy tensor up

to first order. We split the tensor as:

T µ
⌫ =

(0)T µ
⌫ + �T µ

⌫ , (B.33)

where (0)T µ
⌫ is the background stress-tensor, and �T µ

⌫ is given by

�T 0
0 = ⇢(1) =

(⇢0 + p0)

n0
n(1) = (⇢0 + p0)(3 2 � E2,ii � �i

,i), (B.34)

�T i
0 = (⇢0 + p0)u

(1)iu
(0)
0 = (⇢0 + p0)�

i0 , (B.35)

�T 0
i = (⇢0 + p0)u

(0)0u
(1)
i = �(⇢0 + p0)(B2,i + �i0 � S2i), (B.36)

�T i
j = �p(1)�ij = �!⇢(1)�ij = �!(⇢0 + p0)(3 2 � E2,ii � �i

,i)�
i
j, (B.37)

where we have calculated u(1)µ using (B.20), obtaining

u(0)0 = ��2

a
� H

a
�0, u(0)i =

�i0

a
. (B.38)

This stress-energy tensor �T µ
⌫ is exactly the same to that showed in equations (3.38)

and (3.41).
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